
Vector Clocks for Distributed AI Memory
Synchronization:

A Novel Approach to Multi-Device LLM Context
Management

Matthew Long1,2

1Independent Researcher, Chicago, IL
2The YonedaAI Collaboration

matthew@contextfs.ai

YonedaAI Research Collective

December 2025

Abstract

The proliferation of Large Language Model (LLM) assistants across multiple devices
and platforms creates a fundamental challenge: how to maintain consistent, synchronized
memory across distributed AI interactions. While multi-agent memory systems have received
significant attention, the specific problem of personal AI memory synchronization across
devices remains underexplored. We present ContextFS, a novel system that applies vector
clock algorithms—traditionally used in distributed databases—to the domain of AI memory
management.

Our approach differs from existing work in three key aspects: (1) we treat AI memory
as a first-class distributed dataset requiring causality tracking, (2) we synchronize vector
embeddings alongside semantic content to avoid recomputation on resource-constrained de-
vices, and (3) we support heterogeneous AI tool provenance (Claude, GPT, Gemini) within
a unified sync protocol.

We implement a complete system featuring SQLite for local persistence, PostgreSQL
with pgvector for server-side storage, and ChromaDB for client-side semantic search. Ex-
perimental evaluation demonstrates sub-second sync latency for typical workloads (<1000
memories) with correct conflict detection and resolution. To our knowledge, this represents
the first application of vector clocks specifically designed for personal AI assistant memory
synchronization.

Keywords: Vector Clocks, Distributed Systems, LLM Memory, AI Assistants, Synchro-
nization, Conflict Resolution
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1 Introduction

The emergence of AI-powered coding assistants, conversational agents, and knowledge manage-
ment systems has created a new category of personal data: AI memory. This encompasses the
accumulated context, preferences, learned facts, and interaction history that enables AI sys-
tems to provide personalized, context-aware assistance. Unlike traditional application data, AI
memory exhibits unique characteristics that complicate synchronization:

1. Semantic Content: AI memories contain natural language with associated vector em-
beddings for semantic retrieval

2. Multi-Tool Provenance: Memories may originate from different AI systems (Claude
Code, Claude Desktop, Gemini CLI, ChatGPT)

3. Continuous Evolution: Memories evolve through operations like merge, split, and evolve
with lineage tracking

4. Local-First Operation: Users expect AI assistants to work offline with eventual syn-
chronization

Existing approaches to AI memory fall into two categories. Cloud-first systems (e.g., Chat-
GPT’s memory, Claude’s conversation history) store all data centrally, providing consistency
at the cost of offline capability and privacy. Local-only systems provide privacy but sacrifice
cross-device continuity. Neither adequately addresses the needs of power users who interact with
AI across multiple devices and tools.

1.1 Motivating Scenario

Consider a software developer using AI assistants on three devices:

• Desktop workstation: Primary development with Claude Code, indexing large code-
bases

• Laptop: Mobile development, quick queries while traveling

• Linux server: CI/CD integration, automated documentation generation

The developer accumulates thousands of memories: architectural decisions, debugging in-
sights, code patterns, and project context. When switching devices, they expect seamless con-
tinuity. When working offline, they expect full functionality. When conflicts arise (editing the
same decision from two devices), they expect intelligent resolution.

1.2 Contributions

This paper makes the following contributions:

1. Problem Formulation: We formally define the AI memory synchronization problem,
distinguishing it from related work in multi-agent systems and distributed databases

2. Vector Clock Adaptation: We present a vector clock algorithm tailored for AI memory,
including pruning strategies for device scalability and content hashing for deduplication

3. Embedding Synchronization: We introduce a novel approach to synchronizing vector
embeddings alongside content, eliminating the need for recomputation on receiving devices
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4. Reference Implementation: We provide ContextFS, a complete open-source implemen-
tation with SQLite/PostgreSQL backends and integration with major AI tools

5. Evaluation: We present experimental results demonstrating correctness and performance
characteristics

The remainder of this paper is organized as follows. Section 2 surveys related work. Sec-
tion 3 formally defines the problem. Section 4 presents system architecture. Section 5 details
our vector clock adaptation. Section 6 covers embedding synchronization. Section 7 describes
implementation. Section 8 presents evaluation results. Section 9 discusses limitations and future
work. Section 10 concludes.

2 Related Work

Our work draws from three research areas: distributed systems clock synchronization, LLM
memory systems, and multi-agent coordination.

2.1 Vector Clocks and Distributed Consistency

Vector clocks, introduced by Fidge [2] and Mattern [3] in 1988, provide a mechanism for tracking
causality in distributed systems. Unlike Lamport’s logical clocks [1], vector clocks can determine
whether two events are causally related or concurrent.

A vector clock V C is a function from processes to non-negative integers. For processes
P = {p1, ..., pn}:

V C : P → N (1)

The happens-before relation (→) is captured by:

V C(a) < V C(b) ⇐⇒ ∀p ∈ P : V C(a)[p] ≤ V C(b)[p] ∧ ∃q ∈ P : V C(a)[q] < V C(b)[q] (2)

Concurrent events are those where neither happens-before the other:

a ∥ b ⇐⇒ ¬(V C(a) < V C(b)) ∧ ¬(V C(b) < V C(a)) (3)

Vector clocks have been applied extensively in distributed databases. Amazon Dynamo
[4] uses vector clocks for conflict detection in its eventually consistent key-value store. Riak
[5] extends this with dotted version vectors for improved scalability. More recently, CRDTs
(Conflict-free Replicated Data Types) [6] provide automatic conflict resolution for certain data
structures.

Our work adapts vector clocks for a new domain: AI memory synchronization. Unlike
database records, AI memories have semantic content requiring embedding-based retrieval, and
may undergo complex transformations (merge, split, evolve) that traditional sync protocols don’t
address.

2.2 LLM Memory Systems

Memory augmentation for LLMs has received significant attention. We categorize existing ap-
proaches:

Prompt-Level Memory: Systems like MemGPT [7] use LLM context windows as working
memory, paging information in and out as needed. While effective for single-session continuity,
this approach doesn’t address cross-device persistence.
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Retrieval-Augmented Generation (RAG): RAG systems [8] store documents in vector
databases (Pinecone, Weaviate, ChromaDB) for semantic retrieval. These provide persistent
memory but typically assume a single centralized store.

Graph-Based Memory: Systems like Mem0 [9] and A-Mem [10] organize memories as
knowledge graphs with conflict detection via LLM-powered resolution. While sophisticated,
this approach requires LLM inference for every conflict, which is expensive and introduces non-
determinism.

Multi-Agent Memory: The survey by Rezazadeh et al. [11] comprehensively covers mem-
ory in LLM-based multi-agent systems. Key findings include:

• Without synchronization mechanisms, agents develop “divergent beliefs and coordination
failures”

• Turn-based serialization is common but limits parallelism

• Most systems “lack dedicated persistent memory, relying only on prompt-level context”

Our work differs fundamentally: we focus on personal AI memory across devices owned by a
single user, rather than multi-agent coordination. This enables deterministic conflict resolution
without LLM inference.

2.3 Embedding Synchronization

To our knowledge, no prior work explicitly addresses the synchronization of vector embeddings
across devices. The implicit assumption in distributed RAG systems is either:

1. Centralized embedding storage with network-dependent retrieval

2. Local embedding generation on each device (computationally expensive)

We propose a third approach: synchronizing pre-computed embeddings alongside content,
enabling immediate semantic search on receiving devices without local embedding generation.

3 Problem Formulation

3.1 System Model

We consider a system with the following components:
[Device] A device d ∈ D is a computing environment capable of running an AI assistant.

Each device has a unique identifier and local storage.
[Memory] A memory m ∈M is a tuple:

m = (id, content, type, tags, embedding,metadata, vc, ts) (4)

where:

• id: Globally unique identifier (UUID)

• content: Natural language text

• type: Memory category (fact, decision, procedural, code, etc.)

• tags: Set of string labels

• embedding: Vector e ∈ R384 for semantic retrieval
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• metadata: Key-value pairs for extensibility

• vc: Vector clock for causality tracking

• ts: Timestamp of last modification

[Sync Server] A central server S maintains the authoritative copy of all memories and medi-
ates synchronization between devices.

3.2 Operations

Devices perform local operations on memories:

• Create: Generate new memory with initial vector clock

• Update: Modify memory content, incrementing vector clock

• Delete: Soft-delete (mark as deleted, retain for sync)

• Evolve: Create new version with lineage tracking

• Merge: Combine multiple memories into one

• Split: Divide memory into multiple parts

3.3 Consistency Requirements

We require the following consistency properties:

1. Eventual Consistency: After all devices synchronize, they observe the same set of non-
deleted memories

2. Causal Ordering: If memory m1 causally precedes m2 (i.e., m1 → m2), all devices
observe m1 before m2

3. Conflict Detection: Concurrent modifications to the same memory are detected and
reported

4. Content Integrity: Memory content is never corrupted during synchronization

5. Embedding Preservation: Vector embeddings remain semantically aligned with content

3.4 Problem Statement

Given devices D, memories M , and a sync server S, design a synchronization protocol that:

1. Enables offline operation on each device

2. Detects and reports concurrent modifications using vector clocks

3. Synchronizes vector embeddings efficiently

4. Scales to thousands of memories and tens of devices

5. Preserves memory lineage through evolve/merge/split operations
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Figure 1: ContextFS Architecture: Devices synchronize through a central server, with local
SQLite storage for offline operation.

4 System Architecture

4.1 Overview

ContextFS implements a hub-and-spoke architecture with intelligent local storage. Figure 1
illustrates the high-level design.

4.2 Client Architecture

Each device runs a ContextFS client with the following components:

1. Core Engine: Manages memory CRUD operations, maintains consistency

2. SQLite Database: Persistent storage for memories, sessions, and sync state

3. ChromaDB Instance: Vector database for semantic search with embedding storage

4. Sync Client: Handles push/pull operations with vector clock management

5. MCP Server: Model Context Protocol interface for AI tool integration

4.3 Server Architecture

The sync server provides:

1. FastAPI Application: RESTful API for sync operations

2. PostgreSQL Database: Relational storage with JSONB for vector clocks

3. pgvector Extension: Vector storage and similarity search

4. Device Registry: Tracks registered devices and sync state
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4.4 Data Flow

The synchronization process follows a bidirectional flow:
Push (Client → Server):

1. Client queries local memories modified since last sync

2. For each memory, increment local vector clock component

3. Extract embeddings from ChromaDB

4. Send batch to server with vector clocks and embeddings

5. Server applies vector clock comparison for each memory

6. Server returns accepted/rejected/conflict counts

7. Client updates local vector clocks for accepted memories

Pull (Server → Client):

1. Client requests memories modified since last pull

2. Server returns memories with vector clocks and embeddings

3. Client applies changes to local SQLite (batch insert)

4. Client inserts embeddings directly to ChromaDB

5. Client updates sync timestamp

5 Vector Clock Adaptation for AI Memory

5.1 Basic Vector Clock Operations

We implement standard vector clock operations with adaptations for the AI memory domain.

5.2 Conflict Resolution Strategy

When the server receives a push request, it compares client and server vector clocks:

5.3 Device Pruning

A naive vector clock implementation grows unboundedly as devices are added. For a personal
AI memory system, this is problematic: a user might have used dozens of devices over time, but
only a few are actively syncing.

We implement a pruning strategy based on device activity:
The DeviceTracker component maintains last-seen timestamps for each device, enabling

activity-based pruning with a configurable window (default: 30 days).

5.4 Content Hashing for Deduplication

To optimize synchronization, we compute content hashes for deduplication:

hash(m) = SHA256(m.content)[0 : 16] (5)

This enables fast detection of identical content without comparing full text, reducing band-
width for large memory sets.
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Algorithm 1 Vector Clock Operations
1: procedure Increment(V C, device_id)
2: V C[device_id]← V C[device_id] + 1
3: return V C
4: end procedure
5: procedure Merge(V C1, V C2)
6: V Cmerged ← {}
7: for all d ∈ keys(V C1) ∪ keys(V C2) do
8: V Cmerged[d]← max(V C1[d], V C2[d])
9: end for

10: return V Cmerged

11: end procedure
12: procedure HappensBefore(V C1, V C2)
13: all_leq ← ∀d : V C1[d] ≤ V C2[d]
14: any_less← ∃d : V C1[d] < V C2[d]
15: return all_leq ∧ any_less
16: end procedure
17: procedure Concurrent(V C1, V C2)
18: return ¬HappensBefore(V C1, V C2) ∧ ¬HappensBefore(V C2, V C1)
19: end procedure

Algorithm 2 Server-Side Conflict Resolution
1: procedure ProcessPush(memoryclient, device_id)
2: memoryserver ← LookupMemory(memoryclient.id)
3: V Cc ← memoryclient.vector_clock
4: V Cs ← memoryserver.vector_clock
5: if memoryserver = null then
6: ▷ New memory - accept
7: InsertMemory(memoryclient)
8: return ACCEPTED
9: else if HappensBefore(V Cs, V Cc) or V Cs = V Cc then

10: ▷ Server is behind or equal - accept update
11: V Cnew ← Merge(V Cc, V Cs)
12: V Cnew ← Increment(V Cnew, device_id)
13: UpdateMemory(memoryclient, V Cnew)
14: return ACCEPTED
15: else if HappensBefore(V Cc, V Cs) then
16: ▷ Client is behind - reject (stale)
17: return REJECTED
18: else
19: ▷ Concurrent modifications - conflict
20: return CONFLICT
21: end if
22: end procedure
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Algorithm 3 Vector Clock Pruning
1: procedure PruneClock(V C, active_devices, max_devices)
2: if active_devices ̸= null then
3: ▷ Keep only active devices
4: V Cpruned ← {d : v | (d, v) ∈ V C ∧ d ∈ active_devices}
5: else if |V C| > max_devices then
6: ▷ Keep top N by counter value
7: sorted← SortByValue(V C, descending)
8: V Cpruned ← sorted[0 : max_devices]
9: else

10: V Cpruned ← V C
11: end if
12: return V Cpruned

13: end procedure

6 Embedding Synchronization

6.1 The Embedding Recomputation Problem

Traditional approaches to distributed vector search assume either:

1. Centralized Embeddings: All queries route to a central server

2. Local Recomputation: Each device generates embeddings locally

Both approaches have significant drawbacks for AI memory:
Centralized: Requires network connectivity for every search query, violating the local-first

principle and introducing latency.
Local Recomputation: Embedding generation is computationally expensive. For a typical

sentence-transformers model:

• Model size: 100-400 MB

• Inference time: 10-50ms per memory (CPU)

• Memory usage: 500MB-2GB for model loading

For a user with 10,000 memories syncing to a new device, local recomputation would require
100-500 seconds of CPU time and significant memory pressure.

6.2 Embedding Synchronization Protocol

We propose synchronizing embeddings alongside content. The protocol modification is straight-
forward:

1. Push: Client extracts embeddings from local ChromaDB and includes them in the push
payload

2. Server Storage: Server stores embeddings in PostgreSQL using pgvector’s Vector(384)
column type

3. Pull: Server includes embeddings in pull response

4. Client Insertion: Client inserts embeddings directly into ChromaDB without recompu-
tation
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Algorithm 4 Embedding Extraction for Push
1: procedure ExtractEmbeddings(memory_ids)
2: embeddings← {}
3: collection← GetChromaCollection
4: for all batch ∈ Chunk(memory_ids, 100) do
5: result← collection.get(ids = batch, include = [embeddings])
6: for all (id, emb) ∈ Zip(result.ids, result.embeddings) do
7: if emb ̸= null then
8: embeddings[id]← ToList(emb)
9: end if

10: end for
11: end for
12: return embeddings
13: end procedure

Algorithm 5 Embedding Insertion After Pull
1: procedure InsertEmbeddings(synced_memories)
2: collection← GetChromaCollection
3: ids, vectors, documents,metadatas← [], [], [], []
4: for all m ∈ synced_memories do
5: if m.embedding ̸= null then
6: ids.append(m.id)
7: vectors.append(m.embedding)
8: documents.append(m.content)
9: metadatas.append({type : m.type, tags : m.tags})

10: end if
11: end for
12: if |ids| > 0 then
13: collection.upsert(ids, vectors, documents,metadatas)
14: end if
15: end procedure
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6.3 Embedding Consistency

A critical invariant is that embeddings remain semantically aligned with content. We ensure
this through:

1. Atomic Updates: Content and embedding are always updated together

2. Version Tracking: Embeddings inherit the memory’s vector clock

3. Regeneration Fallback: If embedding is missing (legacy data), client can regenerate
locally

6.4 Storage Considerations

Embedding synchronization increases storage and bandwidth requirements:

• Storage per memory: 384× 4 = 1536 bytes (float32)

• For 10,000 memories: ≈ 15 MB additional storage

• Bandwidth: Same as storage (compressed in transit)

This overhead is modest compared to content storage (typically 500-5000 bytes per memory)
and eliminates the computational cost of embedding generation.

7 Implementation

7.1 Technology Stack

ContextFS is implemented in Python with the following components:

Component Technology Purpose

Core Engine Python 3.11+ Memory operations, sync logic
Local Database SQLite Persistent storage
Vector Search ChromaDB Embedding storage, similarity search
Schema Validation Pydantic Type-safe models
HTTP Client httpx Async HTTP for sync
Server Framework FastAPI RESTful sync API
Server Database PostgreSQL 14+ Central storage
Vector Extension pgvector Embedding storage
ORM SQLAlchemy 2.0 Database abstraction
Embedding Model sentence-transformers all-MiniLM-L6-v2 (384 dims)

Table 1: ContextFS Technology Stack

7.2 Data Models

The core memory model includes sync-specific fields:

Listing 1: Memory Schema
1 class Memory(BaseModel):
2 id: str # UUID
3 content: str # Natural language text
4 type: MemoryType # fact , decision , code , etc.
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5 tags: list[str] # Labels
6 summary: str | None # Brief description
7 namespace_id: str # Isolation scope
8

9 # Timestamps
10 created_at: datetime
11 updated_at: datetime
12

13 # Sync fields
14 vector_clock: dict[str , int] # Device -> counter
15 content_hash: str | None # SHA256 truncated
16 deleted_at: datetime | None # Soft delete
17 last_modified_by: str | None # Device ID
18

19 # Embedding (synced)
20 embedding: list[float] | None # 384-dim vector

7.3 Sync Protocol

The sync protocol uses simple REST endpoints:

Endpoint Method Description

/api/sync/register POST Register device with server
/api/sync/push POST Push local changes with vector

clocks
/api/sync/pull POST Pull server changes since timestamp
/api/sync/status POST Get sync status for device

Table 2: Sync API Endpoints

7.4 Batch Operations

To handle large sync operations efficiently, we implement batch processing:

Listing 2: Batch Save Implementation
1 def save_batch(
2 self ,
3 memories: list[Memory],
4 skip_rag: bool = True
5 ) -> int:
6 """Batch␣insert␣memories␣in␣single␣transaction."""
7 conn = sqlite3.connect(self._db_path)
8 cursor = conn.cursor ()
9

10 for memory in memories:
11 cursor.execute("""
12 ␣␣␣␣␣␣␣␣␣␣␣␣INSERT␣OR␣REPLACE␣INTO␣memories
13 ␣␣␣␣␣␣␣␣␣␣␣␣(id ,␣content ,␣type ,␣tags ,␣...)
14 ␣␣␣␣␣␣␣␣␣␣␣␣VALUES␣(?,␣?,␣?,␣?,␣...)
15 ␣␣␣␣␣␣␣␣""", memory_to_tuple(memory))
16

17 conn.commit ()
18

19 # Rebuild FTS index once (not per -memory)
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20 self._rebuild_fts ()
21

22 return len(memories)

7.5 CLI Integration

The sync functionality is exposed through a comprehensive CLI:

Listing 3: CLI Usage
1 # Register device
2 contextfs sync register --server http :// localhost :8766 \
3 --name "My␣Laptop"
4

5 # Push all local changes
6 contextfs sync push --server http :// localhost :8766 --all
7

8 # Pull from server (initial sync)
9 contextfs sync pull --server http :// localhost :8766 --all

10

11 # Full bidirectional sync
12 contextfs sync all --server http :// localhost :8766
13

14 # Run sync daemon (continuous)
15 contextfs sync daemon --server http :// localhost :8766 \
16 --interval 300

8 Evaluation

8.1 Experimental Setup

We evaluate ContextFS on the following dimensions:

1. Correctness: Vector clock operations correctly detect causality and conflicts

2. Performance: Sync latency and throughput for varying workloads

3. Scalability: Behavior as memory count and device count increase

4. Embedding Sync: Overhead and correctness of embedding synchronization

Hardware: Tests run on Apple M2 Max (12 cores, 32GB RAM) for client and an Intel Xeon
E5-2680 v4 (28 cores, 128GB RAM) for server.

Software: Python 3.12, PostgreSQL 15 with pgvector 0.5, ChromaDB 0.4.

8.2 Correctness Testing

We verify vector clock correctness through unit tests covering:

• Happens-before detection

• Concurrent event detection

• Clock merging

• Clock pruning
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Listing 4: Vector Clock Test Cases
1 def test_happens_before ():
2 vc1 = VectorClock ({"A": 1, "B": 2})
3 vc2 = VectorClock ({"A": 2, "B": 3})
4 assert vc1.happens_before(vc2)
5 assert not vc2.happens_before(vc1)
6

7 def test_concurrent ():
8 vc1 = VectorClock ({"A": 2, "B": 1})
9 vc2 = VectorClock ({"A": 1, "B": 2})

10 assert vc1.concurrent_with(vc2)
11

12 def test_merge ():
13 vc1 = VectorClock ({"A": 2, "B": 1})
14 vc2 = VectorClock ({"A": 1, "B": 3})
15 merged = vc1.merge(vc2)
16 assert merged.clock == {"A": 2, "B": 3}

All 47 vector clock tests pass, covering edge cases including empty clocks, single-device clocks,
and large device sets.

8.3 Performance Results

8.3.1 Push Latency

We measure push latency for varying memory counts:

Memories Mean (ms) P95 (ms) Throughput (mem/s)

100 45 62 2,222
500 187 245 2,674

1,000 356 478 2,809
5,000 1,823 2,145 2,742

10,000 3,712 4,234 2,694

Table 3: Push Latency by Memory Count (with embeddings)

Throughput remains stable at approximately 2,700 memories/second, indicating linear scal-
ing with memory count.

8.3.2 Pull Latency

Pull operations include embedding insertion to ChromaDB:

Memories Network (ms) Insert (ms) Total (ms)

100 38 12 50
500 156 48 204

1,000 298 89 387
5,000 1,456 412 1,868

10,000 2,987 834 3,821

Table 4: Pull Latency Breakdown (with embeddings)

ChromaDB insertion adds approximately 25% overhead to pull operations.
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8.3.3 Embedding Sync Overhead

We compare sync with and without embeddings:

Memories Without (ms) With (ms) Overhead vs. Recompute

1,000 267 387 +45% -98%
10,000 2,845 3,821 +34% -99%

Table 5: Embedding Sync Overhead vs. Local Recomputation

The overhead of embedding synchronization (34-45%) is vastly outweighed by avoided recom-
putation cost. For 10,000 memories, recomputing embeddings locally would take approximately
300-500 seconds versus 976ms additional sync time.

8.4 Conflict Detection

We simulate concurrent modifications to verify conflict detection:

1. Device A and B both start with memory m at V C = {A : 1, B : 1}

2. Device A modifies m: V C = {A : 2, B : 1}

3. Device B modifies m: V C = {A : 1, B : 2}

4. Device A pushes: accepted (server was behind)

5. Device B pushes: conflict detected

The conflict response includes both versions for manual resolution:

Listing 5: Conflict Response
1 {
2 "entity_id ": "abc123",
3 "entity_type ": "memory",
4 "client_clock ": {"A": 1, "B": 2},
5 "server_clock ": {"A": 2, "B": 1},
6 "client_content ": "Device B’s version",
7 "server_content ": "Device A’s version",
8 "client_updated_at ": "2025 -12 -22 T10 :00:00Z",
9 "server_updated_at ": "2025 -12 -22 T09 :55:00Z"

10 }

8.5 Scalability

8.5.1 Device Scaling

Vector clock size grows linearly with device count. With pruning enabled (30-day window),
typical users see 2-5 active devices:

The 50-device limit ensures bounded overhead even for pathological cases.

8.5.2 Memory Scaling

We test sync performance for large memory sets:
Full sync scales linearly, while incremental sync (typical daily use) remains near-constant.
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Devices Clock Size (bytes) Overhead/Memory

2 40-80 0.8-1.6%
5 100-200 2-4%

10 200-400 4-8%
50 (max) 1,000-2,000 20-40%

Table 6: Vector Clock Overhead by Device Count

Memories Full Sync (s) Incremental (ms)

1,000 0.4 45
10,000 3.8 48
50,000 19.2 52

100,000 41.5 55

Table 7: Sync Time for Large Memory Sets

9 Discussion

9.1 Design Decisions

9.1.1 Central Server vs. Peer-to-Peer

We chose a hub-and-spoke architecture over peer-to-peer for several reasons:

1. Simplified Conflict Resolution: With a central arbiter, conflict detection is determin-
istic

2. NAT Traversal: Devices behind firewalls can always reach the server

3. Backup: The server provides automatic off-device backup

4. Device Discovery: No need for mDNS or other discovery protocols

The tradeoff is server dependency for sync operations. We mitigate this with robust local-first
operation.

9.1.2 Last-Write-Wins vs. Custom Resolution

For detected conflicts, we currently return both versions for manual resolution. Alternative
strategies include:

• Last-Write-Wins (LWW): Simple but may lose data

• LLM-Powered Merge: Use AI to intelligently merge conflicting versions

• CRDT-Style Merge: For certain operations (tag addition), automatic merge is possible

We plan to implement optional LWW and LLM-merge in future versions.

9.2 Limitations

9.2.1 Clock Drift

Vector clocks assume devices have roughly synchronized wall clocks for timestamp-based queries.
Significant clock drift (>minutes) could cause unexpected behavior in “changes since” queries.
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9.2.2 Partition Tolerance

During network partitions, devices accumulate changes independently. Reconciliation after ex-
tended partitions may produce many conflicts. We recommend periodic sync (every few hours)
to minimize this.

9.2.3 Embedding Model Consistency

Our approach assumes all devices use the same embedding model. If devices use different models,
embeddings are incompatible. We enforce model versioning in metadata to detect mismatches.

9.3 Security Considerations

9.3.1 Authentication

The current implementation uses device IDs for identification. Production deployments should
add:

• API key or OAuth authentication

• TLS for transport security

• Device attestation for sensitive deployments

9.3.2 Data Privacy

AI memories may contain sensitive information. Server-side encryption and zero-knowledge sync
are potential future enhancements.

9.4 Future Work

1. CRDT Integration: Automatic conflict resolution for compatible operations

2. Selective Sync: Namespace-based sync policies

3. Offline Conflict UI: Desktop application for conflict resolution

4. Federated Architecture: Multiple sync servers for redundancy

5. End-to-End Encryption: Client-side encryption with key sharing

10 Conclusion

We have presented ContextFS, a novel system for synchronizing AI memory across devices
using vector clocks. Our approach addresses a gap in existing AI memory research: the need for
distributed, conflict-aware synchronization of personal AI assistant context.

Key contributions include:

1. Adaptation of vector clocks for AI memory with device pruning

2. Embedding synchronization protocol eliminating recomputation

3. Complete reference implementation with SQLite/PostgreSQL backends

4. Experimental validation of correctness and performance
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Our evaluation demonstrates sub-second sync latency for typical workloads, correct conflict
detection, and significant savings from embedding synchronization versus local recomputation.

As AI assistants become ubiquitous across devices and platforms, the need for robust memory
synchronization will only grow. We hope ContextFS provides a foundation for future research
in this emerging area.

Availability

ContextFS is open source and available at:

https://github.com/MagnetonIO/contextfs
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A API Reference

A.1 Push Request

1 {
2 "device_id ": "laptop -abc123",
3 "memories ": [
4 {
5 "id": "mem -uuid -here",
6 "content ": "Memory content text",
7 "type": "fact",
8 "tags": ["tag1", "tag2"],
9 "vector_clock ": {"laptop -abc123 ": 5},

10 "content_hash ": "a1b2c3d4e5f6g7h8",
11 "embedding ": [0.1, 0.2, ..., 0.384]
12 }
13 ],
14 "last_sync_timestamp ": "2025 -12 -22 T10 :00:00Z"
15 }

A.2 Push Response

1 {
2 "success ": true ,
3 "status ": "success",
4 "accepted ": 10,
5 "rejected ": 2,
6 "conflicts ": [],
7 "server_timestamp ": "2025 -12 -22 T10 :05:00Z"
8 }

A.3 Pull Request

1 {
2 "device_id ": "laptop -abc123",
3 "since_timestamp ": "2025 -12 -22 T09 :00:00Z",
4 "namespace_ids ": null ,
5 "limit": 1000,
6 "offset ": 0
7 }

A.4 Pull Response

1 {
2 "success ": true ,
3 "memories ": [...],
4 "sessions ": [...],
5 "edges": [...],
6 "server_timestamp ": "2025 -12 -22 T10 :05:00Z",
7 "has_more ": false ,
8 "next_offset ": 0
9 }
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B Memory Types

Type Description

fact General knowledge or information
decision Architectural or design decision
procedural How-to instructions or processes
episodic Event or session summary
user User preferences or context
code Code snippet or pattern
error Error message or debugging info
commit Git commit summary
todo Task or action item
issue Bug report or feature request
api API documentation
schema Data structure definition
test Test case or coverage info
review Code review feedback
release Release notes
config Configuration details
dependency Package or library info
doc Documentation excerpt

Table 8: Supported Memory Types

C Docker Deployment

Listing 6: docker-compose.sync.yml
1 version: ’3.8’
2

3 services:
4 sync -postgres:
5 image: pgvector/pgvector:pg15
6 environment:
7 POSTGRES_DB: contextfs_sync
8 POSTGRES_USER: contextfs
9 POSTGRES_PASSWORD: contextfs

10 volumes:
11 - postgres_data :/var/lib/postgresql/data
12 ports:
13 - "5432:5432"
14

15 sync -server:
16 build:
17 context: .
18 dockerfile: docker/Dockerfile.sync
19 environment:
20 DATABASE_URL: postgresql+asyncpg :// contextfs:contextfs@sync -

postgres/contextfs_sync
21 ports:
22 - "8766:8766"
23 depends_on:

22



24 - sync -postgres
25

26 volumes:
27 postgres_data:

23
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