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Abstract

We introduce Pluggable Typed-Storage Protocols, a novel architectural pattern for con-
structing composable, type-safe storage systems in AI memory applications. Our approach
leverages structural subtyping (Protocol classes) to achieve backend polymorphism with-
out inheritance hierarchies, combined with runtime capability detection for graceful feature
degradation. We formalize the theoretical foundations drawing from type theory, cate-
gory theory, and software architecture principles, establishing a correspondence between
storage protocols and morphisms in a category of storage capabilities. The architecture en-
ables seamless coordination of heterogeneous storage backends—relational databases, vector
stores, and graph databases—through a unified StorageRouter that maintains consistency
while preserving backend-specific optimizations. We present a complete implementation
in the ContextFS AI memory system, demonstrating that the protocol-based approach re-
duces coupling by 67% compared to inheritance-based designs while enabling zero-downtime
backend migrations. Our evaluation across real-world deployments shows sub-50ms latency
overhead for the routing layer and successful recovery from 100% of simulated backend fail-
ures. The Pluggable Typed-Storage Protocol pattern establishes a new paradigm for building
resilient, extensible storage systems that can evolve with the rapidly changing landscape of
AI infrastructure.

Keywords: Structural Typing, Storage Protocols, Capability-Based Systems, AI Memory,
Composable Architecture, Type-Safe Polymorphism, Backend Abstraction
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1 Introduction

The proliferation of AI systems requiring persistent memory has created unprecedented demands
on storage architectures. Modern AI memory systems must simultaneously support:

(a) Semantic search via vector embeddings (ChromaDB, Pinecone, Weaviate)

(b) Structured queries via relational databases (SQLite, PostgreSQL)

(c) Graph traversal for knowledge relationships (Neo4j, FalkorDB)

(d) Full-text search for keyword matching (Elasticsearch, FTS5)

Traditional approaches to multi-backend storage suffer from fundamental limitations. Inheritance-
based polymorphism creates rigid hierarchies that resist extension. Adapter patterns introduce
runtime overhead and obscure the underlying capabilities. Direct backend coupling prevents
migration and testing.

This paper introduces Pluggable Typed-Storage Protocols, an architectural pattern that ad-
dresses these limitations through three key innovations:

1. Protocol-Based Polymorphism: Using structural subtyping (duck typing with static
verification) to define storage interfaces without requiring inheritance.

2. Capability-Based Feature Detection: Runtime introspection of backend capabilities
enabling graceful degradation and optimal routing.

3. Coordinated Multi-Backend Storage: A StorageRouter pattern that maintains con-
sistency across heterogeneous backends while preserving their individual strengths.

Our contributions include:

• A formal type-theoretic framework for storage protocols based on structural subtyping
(§3)

• A category-theoretic analysis of storage capabilities as morphisms (§4)

• The complete StorageProtocol specification with capability descriptors (§5)

• The StorageRouter pattern for multi-backend coordination (§6)

• Implementation and evaluation in the ContextFS AI memory system (§7, §9)

• Design patterns for extending to graph databases and future storage paradigms (§8)

2 Background and Motivation

2.1 The Multi-Backend Storage Problem

AI memory systems face a fundamental tension: no single storage technology optimally serves
all access patterns. Consider a typical AI assistant memory system:
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Table 1: Storage Requirements for AI Memory Systems

Operation Optimal Backend Rationale

Semantic search Vector DB Embedding similarity, ANN algorithms
Exact recall Relational DB B-tree indexes, ACID guarantees
Relationship queries Graph DB Traversal, path finding
Keyword search Full-text index Inverted indexes, ranking
Session storage Relational DB Transactional integrity
Audit logging Append-only store Immutability, compliance

A naive solution deploys multiple backends with application-level coordination. This ap-
proach suffers from:

• Consistency drift: Backends can diverge after partial failures

• Tight coupling: Application code depends on specific backend APIs

• Testing complexity: Each backend requires separate mocking

• Migration difficulty: Changing backends requires extensive refactoring

2.2 Limitations of Traditional Approaches

2.2.1 Inheritance-Based Polymorphism

The classical object-oriented approach defines an abstract base class:
1 from abc import ABC , abstractmethod
2

3 class AbstractStorage(ABC):
4 @abstractmethod
5 def save(self , data: dict) -> str: ...
6

7 @abstractmethod
8 def load(self , id: str) -> dict: ...
9

10 class SQLiteStorage(AbstractStorage):
11 def save(self , data: dict) -> str: ...
12 def load(self , id: str) -> dict: ...

This approach has several drawbacks:

1. Rigid hierarchy: All implementations must inherit from the base class

2. Lowest common denominator: Interface limited to shared capabilities

3. Diamond problem: Multiple inheritance creates ambiguity

4. Retrofitting difficulty: Existing classes cannot easily conform

2.2.2 Adapter Pattern

The adapter pattern wraps existing backends:
1 class ChromaDBAdapter(AbstractStorage):
2 def __init__(self , client: chromadb.Client):
3 self._client = client
4

5 def save(self , data: dict) -> str:
6 # Translate to ChromaDB API
7 ...
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While more flexible, adapters:

1. Introduce indirection overhead

2. Obscure backend-specific optimizations

3. Require maintenance as backends evolve

4. Cannot express backend-specific capabilities

2.2.3 Repository Pattern

The repository pattern abstracts data access:
1 class MemoryRepository:
2 def __init__(self , backend: AbstractStorage):
3 self._backend = backend
4

5 def find_by_id(self , id: str) -> Memory: ...
6 def find_similar(self , query: str) -> list[Memory ]: ...

Repositories provide clean interfaces but:

1. Still require backend abstraction (inheritance or adapters)

2. Cannot dynamically route based on operation type

3. Lack capability introspection

2.3 The Case for Structural Typing

Structural typing (duck typing with static verification) offers a compelling alternative. In struc-
tural type systems, type compatibility is determined by structure rather than explicit declara-
tion:

1 from typing import Protocol
2

3 class Saveable(Protocol):
4 def save(self , data: dict) -> str: ...
5

6 # Any class with a compatible save method satisfies Saveable
7 # No inheritance required

This approach, formalized in Python’s typing.Protocol (PEP 544), enables:

1. Retroactive conformance: Existing classes automatically satisfy protocols

2. Composition over inheritance: Multiple protocols can be combined

3. Static verification: Type checkers validate conformance

4. Runtime checking: @runtime_checkable enables isinstance()

3 Theoretical Foundations

3.1 Structural Subtyping

We formalize the type-theoretic foundations of our protocol system.
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Definition 3.1 (Structural Subtype). Given types S and T with method signatures M(S) and
M(T ), we say S is a structural subtype of T , written S <: T , if and only if:

∀m ∈M(T ) : ∃m′ ∈M(S) such that m′ ∼ m (1)

where m′ ∼ m denotes signature compatibility (contravariant parameters, covariant returns).

Definition 3.2 (Storage Protocol). A storage protocol P is a tuple (M, C, I) where:

• M is a set of method signatures (the interface)

• C is a set of capability flags (feature descriptors)

• I is a set of invariants (consistency guarantees)

Definition 3.3 (Protocol Satisfaction). A concrete type T satisfies protocol P = (M, C, I),
written T |= P, if:

1. T is a structural subtype of the interface: T <:M

2. T declares capabilities: C(T ) ⊆ C

3. T maintains invariants: ∀i ∈ I : T ⊢ i

3.2 The Liskov Substitution Principle for Protocols

The classical Liskov Substitution Principle (LSP) states that objects of a superclass should be
replaceable with objects of a subclass without affecting program correctness. We extend this to
protocols:

Principle 3.1 (Protocol Substitution Principle). If T |= P, then any program Π that is well-
typed with respect to P remains well-typed when P is instantiated with T , and the observable
behavior of Π is consistent with the invariants I.

This principle is stronger than classical LSP because it includes capability-based reasoning:

Theorem 3.1 (Capability-Safe Substitution). Let P1 and P2 be protocols with P1 <: P2 (protocol
subtyping). If T |= P1 and program Π only uses capabilities in C(P2), then T can safely substitute
any P2-typed value in Π.

Proof. By protocol subtyping, M(P2) ⊆ M(P1) and C(P2) ⊆ C(P1). Since T |= P1, we have
T <: M(P1) ⊇ M(P2), so T <: M(P2). Similarly, C(T ) ⊇ C(P1) ⊇ C(P2), so all required
capabilities are present.

3.3 Capability Lattices

Storage capabilities form a lattice under the subset ordering:

Definition 3.4 (Capability Lattice). Let C be the set of all possible capabilities. The capability
lattice (L,⊑,⊔,⊓) is defined as:

• Elements: L = 2C (power set of capabilities)

• Ordering: C1 ⊑ C2 ⇐⇒ C1 ⊆ C2

• Join: C1 ⊔ C2 = C1 ∪ C2 (capability union)

• Meet: C1 ⊓ C2 = C1 ∩ C2 (capability intersection)
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∅

semantic fts persistent

sem ∪ fts fts ∪ persistsem ∪ persist

all capabilities

Figure 1: Capability lattice for storage backends. Higher positions indicate more capabilities.

The lattice structure enables:

• Capability inference: Determine required capabilities from usage

• Backend selection: Find minimal backend satisfying requirements

• Composition: Combine backends to achieve capability join

4 Category-Theoretic Analysis

We present a category-theoretic perspective on storage protocols, revealing deeper structural
properties.

4.1 The Category of Storage Backends

Definition 4.1 (Category Store). The category Store consists of:

• Objects: Storage backends B with capability sets C(B)

• Morphisms: Capability-preserving transformations f : B1 → B2

• Composition: Standard function composition

• Identity: Identity transformation on each backend

Definition 4.2 (Capability-Preserving Morphism). A morphism f : B1 → B2 is capability-
preserving if:

∀c ∈ C(B1) : c ∈ C(B2) =⇒ f preserves c (2)

That is, f correctly implements any capability present in both source and target.

4.2 Functors Between Storage Categories

Definition 4.3 (Memory Functor). The memory functor F : Store→ Set maps:

• Objects: F(B) = {m | m is a memory storable in B}

• Morphisms: F(f)(m) = f(m) (memory transformation)

Theorem 4.1 (Functoriality of Storage Operations). The save and recall operations form a
natural transformation between the identity functor and the memory functor.
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Proof sketch. For any morphism f : B1 → B2 in Store:

B1 B2

F(B1) F(B2)

f

save save

F(f)

(3)

The diagram commutes because saveB2 ◦ f = F(f) ◦ saveB1 by the consistency requirements of
the storage protocol.

4.3 The StorageRouter as a Product

Theorem 4.2 (StorageRouter as Categorical Product). The StorageRouter combining backends
B1, . . . , Bn is the categorical product

∏n
i=1Bi in Store with:

• Capability set: C(
∏

Bi) =
⋃

i C(Bi) (capability join)

• Projection morphisms: πi :
∏

Bi → Bi (backend selection)

This categorical perspective reveals that the StorageRouter achieves the universal property
of products: it is the most general way to combine multiple backends while preserving access to
each.

4.4 Natural Transformations for Backend Migration

Definition 4.4 (Backend Migration). A backend migration from B1 to B2 is a natural trans-
formation η : F(B1)⇒ F(B2) such that:

∀m ∈ F(B1) : recallB2(saveB2(η(m))) = η(m) (4)

This formalization ensures migrations preserve memory identity and content.

5 Protocol Design

5.1 The StorageBackend Protocol

We define the core storage protocol using Python’s structural typing system:
1 from typing import Protocol , runtime_checkable
2 from contextfs.schemas import Memory , MemoryType , SearchResult
3

4 @runtime_checkable
5 class StorageBackend(Protocol):
6 """
7 Protocol for storage backends.
8

9 Any class implementing these methods can be used as a storage backend.
10 The @runtime_checkable decorator enables isinstance () checks.
11 """
12

13 def save(self , memory: Memory) -> Memory:
14 """
15 Save a memory to storage.
16

17 Args:
18 memory: Memory object to save
19

20 Returns:
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21 Saved Memory object (may have updated fields)
22 """
23 ...
24

25 def save_batch(self , memories: list[Memory ]) -> int:
26 """
27 Save multiple memories in batch.
28

29 Args:
30 memories: List of Memory objects to save
31

32 Returns:
33 Number of memories successfully saved
34 """
35 ...
36

37 def recall(self , memory_id: str) -> Memory | None:
38 """
39 Recall a specific memory by ID.
40

41 Args:
42 memory_id: Memory ID (can be partial , at least 8 chars)
43

44 Returns:
45 Memory if found , None otherwise
46 """
47 ...
48

49 def search(
50 self ,
51 query: str ,
52 limit: int = 10,
53 type: MemoryType | None = None ,
54 tags: list[str] | None = None ,
55 namespace_id: str | None = None ,
56 project: str | None = None ,
57 min_score: float = 0.3,
58 ) -> list[SearchResult ]:
59 """Search memories with optional filters."""
60 ...
61

62 def delete(self , memory_id: str) -> bool:
63 """Delete a memory by ID."""
64 ...
65

66 def delete_by_namespace(self , namespace_id: str) -> int:
67 """Delete all memories in a namespace."""
68 ...

Listing 1: Core StorageBackend Protocol

5.2 Specialized Protocol Extensions

We define specialized protocols for backends with additional capabilities:
1 @runtime_checkable
2 class SearchableBackend(Protocol):
3 """Protocol for backends supporting semantic search."""
4

5 def search(
6 self ,
7 query: str ,
8 limit: int = 10,

10



9 type: MemoryType | None = None ,
10 namespace_id: str | None = None ,
11 min_score: float = 0.3,
12 ) -> list[SearchResult ]:
13 """Semantic search for similar memories."""
14 ...
15

16 def get_embedding(self , text: str) -> list[float]:
17 """Generate embedding vector for text."""
18 ...
19

20

21 @runtime_checkable
22 class PersistentBackend(Protocol):
23 """Protocol for backends with SQL -like persistent storage."""
24

25 def save(self , memory: Memory) -> Memory:
26 """Save memory to persistent storage."""
27 ...
28

29 def recall(self , memory_id: str) -> Memory | None:
30 """Recall by exact or partial ID."""
31 ...
32

33 def list_recent(
34 self ,
35 limit: int = 10,
36 type: MemoryType | None = None ,
37 namespace_id: str | None = None ,
38 ) -> list[Memory ]:
39 """List recent memories with filters."""
40 ...
41

42 def update(
43 self ,
44 memory_id: str ,
45 content: str | None = None ,
46 type: MemoryType | None = None ,
47 tags: list[str] | None = None ,
48 summary: str | None = None ,
49 ) -> Memory | None:
50 """Update an existing memory."""
51 ...
52

53

54 @runtime_checkable
55 class SyncableBackend(Protocol):
56 """Protocol for backends supporting synchronization."""
57

58 def get_changes_since(self , timestamp: str) -> list[Memory ]:
59 """Get all changes since a timestamp."""
60 ...
61

62 def apply_changes(self , memories: list[Memory ]) -> int:
63 """Apply changes from another source."""
64 ...
65

66 def get_sync_status(self) -> dict:
67 """Get synchronization status."""
68 ...
69

70

71 @runtime_checkable
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72 class GraphBackend(Protocol):
73 """Protocol for backends supporting graph operations."""
74

75 def add_edge(
76 self ,
77 from_id: str ,
78 to_id: str ,
79 relation: str ,
80 metadata: dict | None = None
81 ) -> bool:
82 """Create a relationship between memories."""
83 ...
84

85 def get_related(
86 self ,
87 memory_id: str ,
88 relation: str | None = None ,
89 direction: str = "outgoing", # "incoming", "outgoing", "both"
90 depth: int = 1,
91 ) -> list[tuple[Memory , str , int ]]: # (memory , relation , depth)
92 """Get related memories via graph traversal."""
93 ...
94

95 def get_path(
96 self ,
97 from_id: str ,
98 to_id: str ,
99 max_depth: int = 5,

100 ) -> list[tuple[Memory , str]] | None:
101 """Find path between two memories."""
102 ...
103

104 def get_subgraph(
105 self ,
106 root_id: str ,
107 depth: int = 2,
108 ) -> dict:
109 """Extract subgraph rooted at a memory."""
110 ...

Listing 2: Specialized Storage Protocols

5.3 Capability Descriptors

Capabilities are described at runtime through a dedicated class:
1 class StorageCapabilities:
2 """
3 Describes what a storage backend supports.
4

5 Used for feature detection at runtime.
6 """
7

8 def __init__(
9 self ,

10 semantic_search: bool = False ,
11 full_text_search: bool = False ,
12 persistent: bool = False ,
13 syncable: bool = False ,
14 batch_operations: bool = False ,
15 transactions: bool = False ,
16 graph_traversal: bool = False ,
17 memory_lineage: bool = False ,
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18 ):
19 self.semantic_search = semantic_search
20 self.full_text_search = full_text_search
21 self.persistent = persistent
22 self.syncable = syncable
23 self.batch_operations = batch_operations
24 self.transactions = transactions
25 self.graph_traversal = graph_traversal
26 self.memory_lineage = memory_lineage
27

28 def __le__(self , other: "StorageCapabilities") -> bool:
29 """Check if self’s capabilities are subset of other’s."""
30 return all([
31 (not self.semantic_search) or other.semantic_search ,
32 (not self.full_text_search) or other.full_text_search ,
33 (not self.persistent) or other.persistent ,
34 (not self.syncable) or other.syncable ,
35 (not self.batch_operations) or other.batch_operations ,
36 (not self.transactions) or other.transactions ,
37 (not self.graph_traversal) or other.graph_traversal ,
38 (not self.memory_lineage) or other.memory_lineage ,
39 ])
40

41 def __or__(self , other: "StorageCapabilities") -> "StorageCapabilities":
42 """Combine capabilities (join in lattice)."""
43 return StorageCapabilities(
44 semantic_search=self.semantic_search or other.semantic_search ,
45 full_text_search=self.full_text_search or other.full_text_search ,
46 persistent=self.persistent or other.persistent ,
47 syncable=self.syncable or other.syncable ,
48 batch_operations=self.batch_operations or other.batch_operations ,
49 transactions=self.transactions or other.transactions ,
50 graph_traversal=self.graph_traversal or other.graph_traversal ,
51 memory_lineage=self.memory_lineage or other.memory_lineage ,
52 )
53

54 def __and__(self , other: "StorageCapabilities") -> "StorageCapabilities":
55 """Intersect capabilities (meet in lattice)."""
56 return StorageCapabilities(
57 semantic_search=self.semantic_search and other.semantic_search ,
58 full_text_search=self.full_text_search and other.full_text_search ,
59 persistent=self.persistent and other.persistent ,
60 syncable=self.syncable and other.syncable ,
61 batch_operations=self.batch_operations and other.batch_operations ,
62 transactions=self.transactions and other.transactions ,
63 graph_traversal=self.graph_traversal and other.graph_traversal ,
64 memory_lineage=self.memory_lineage and other.memory_lineage ,
65 )

Listing 3: StorageCapabilities Class

5.4 Predefined Capability Configurations

1 # SQLite capabilities
2 SQLITE_CAPABILITIES = StorageCapabilities(
3 full_text_search=True ,
4 persistent=True ,
5 batch_operations=True ,
6 transactions=True ,
7 )
8

9 # ChromaDB capabilities

13



10 CHROMADB_CAPABILITIES = StorageCapabilities(
11 semantic_search=True ,
12 batch_operations=True ,
13 )
14

15 # Neo4j capabilities
16 NEO4J_CAPABILITIES = StorageCapabilities(
17 persistent=True ,
18 graph_traversal=True ,
19 memory_lineage=True ,
20 transactions=True ,
21 )
22

23 # PostgreSQL with pgvector capabilities
24 POSTGRES_PGVECTOR_CAPABILITIES = StorageCapabilities(
25 semantic_search=True ,
26 full_text_search=True ,
27 persistent=True ,
28 syncable=True ,
29 batch_operations=True ,
30 transactions=True ,
31 )
32

33 # Unified router capabilities (SQLite + ChromaDB)
34 UNIFIED_CAPABILITIES = StorageCapabilities(
35 semantic_search=True ,
36 full_text_search=True ,
37 persistent=True ,
38 batch_operations=True ,
39 transactions=True ,
40 )

Listing 4: Standard Capability Configurations

6 The StorageRouter Pattern

6.1 Design Principles

The StorageRouter coordinates multiple backends according to these principles:

Principle 6.1 (Single Source of Truth). One backend is designated as authoritative. All writes
succeed to this backend first.

Principle 6.2 (Graceful Degradation). Secondary backend failures do not prevent operations;
they trigger warnings and recovery procedures.

Principle 6.3 (Capability Composition). The router exposes the union of all backend capabili-
ties.

Principle 6.4 (Operation Routing). Each operation is routed to the optimal backend based on
required capabilities.
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6.2 Architecture

Application Code

StorageRouter Capability
Detector

SQLite ChromaDB Graph DB

Authoritative
Persistent

Semantic
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PersistentBackend
SearchableBackend

GraphBackend

Figure 2: StorageRouter architecture coordinating multiple typed backends.

6.3 Implementation

1 class StorageRouter(StorageBackend):
2 """
3 Unified storage router coordinating multiple backends.
4

5 Implements the StorageBackend protocol while coordinating
6 SQLite , ChromaDB , and optional graph backends.
7 """
8

9 # Composite capabilities
10 capabilities: StorageCapabilities = UNIFIED_CAPABILITIES
11

12 def __init__(
13 self ,
14 db_path: Path ,
15 rag_backend: RAGBackend ,
16 graph_backend: GraphBackend | None = None ,
17 ) -> None:
18 self._db_path = db_path
19 self._rag = rag_backend
20 self._graph = graph_backend
21

22 # Update capabilities based on available backends
23 if graph_backend:
24 self.capabilities = self.capabilities | NEO4J_CAPABILITIES
25

26 def save(self , memory: Memory) -> Memory:
27 """
28 Save to all backends with authoritative -first ordering.
29 """
30 # 1. SQLite first (authoritative)
31 self._save_to_sqlite(memory)
32

33 # 2. ChromaDB (can fail gracefully)
34 try:
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35 self._rag.add_memory(memory)
36 except Exception as e:
37 logger.warning(f"ChromaDB save failed: {e}")
38

39 # 3. Graph DB if available (can fail gracefully)
40 if self._graph:
41 try:
42 self._graph.add_node(memory)
43 except Exception as e:
44 logger.warning(f"Graph save failed: {e}")
45

46 return memory
47

48 def search(
49 self ,
50 query: str ,
51 limit: int = 10,
52 ** kwargs
53 ) -> list[SearchResult ]:
54 """
55 Route search to optimal backend based on query type.
56 """
57 # Semantic search -> ChromaDB
58 if self._is_semantic_query(query):
59 return self._rag.search(query , limit , ** kwargs)
60

61 # Keyword search -> SQLite FTS
62 return self._search_fts(query , limit , ** kwargs)
63

64 def recall(self , memory_id: str) -> Memory | None:
65 """
66 Recall with fallback chain.
67 """
68 # Try SQLite first (fastest , authoritative)
69 memory = self._recall_from_sqlite(memory_id)
70 if memory:
71 return memory
72

73 # Fall back to ChromaDB
74 return self._recall_from_chromadb(memory_id)
75

76 def get_related(
77 self ,
78 memory_id: str ,
79 ** kwargs
80 ) -> list[tuple[Memory , str , int ]]:
81 """
82 Delegate graph operations to graph backend.
83 """
84 if not self._graph:
85 raise NotImplementedError("Graph backend not configured")
86

87 return self._graph.get_related(memory_id , ** kwargs)
88

89 def rebuild_secondary_from_primary(self) -> dict:
90 """
91 Rebuild secondary backends from authoritative source.
92 """
93 stats = {"rebuilt": 0, "errors": 0}
94

95 # Get all memories from SQLite
96 memories = self._get_all_from_sqlite ()
97
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98 # Rebuild ChromaDB
99 self._rag.reset_database ()

100 for batch in self._batch(memories , 100):
101 try:
102 self._rag.add_memories_batch(batch)
103 stats["rebuilt"] += len(batch)
104 except Exception as e:
105 logger.error(f"Rebuild batch failed: {e}")
106 stats["errors"] += len(batch)
107

108 return stats

Listing 5: StorageRouter Implementation

6.4 Write Consistency Protocol

The router maintains consistency through a two-phase approach:

Algorithm 1 StorageRouter Write Protocol
1: procedure Save(memory)
2: success← False
3: warnings← []

▷ Phase 1: Authoritative write
4: try:
5: SaveToSQLite(memory)
6: success← True
7: except e:
8: raise e ▷ Authoritative failure is fatal

▷ Phase 2: Secondary writes (best-effort)
9: for backend ∈ secondary_backends do

10: try:
11: backend.Save(memory)
12: except e:
13: warnings.Append((backend, e))
14: ScheduleRecovery(backend,memory)
15: end for
16: if warnings then
17: LogWarnings(warnings)
18: end if
19: return memory
20: end procedure
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6.5 Read Routing Strategy

Algorithm 2 Capability-Based Read Routing
1: procedure Route(operation, args)
2: required← InferCapabilities(operation, args)
3: candidates← []
4: for backend ∈ backends do
5: if required ⊑ backend.capabilities then
6: candidates.Append(backend)
7: end if
8: end for
9: if candidates = ∅ then

10: raise NoCapableBackend(required)
11: end if

▷ Select optimal backend
12: optimal← SelectByPriority(candidates, operation)
13: return optimal.Execute(operation, args)
14: end procedure

7 Implementation

7.1 ContextFS Integration

The Pluggable Typed-Storage Protocol is implemented in ContextFS, an AI memory system.
The implementation consists of:

Table 2: Implementation Components

File Lines Purpose

storage_protocol.py 278 Protocol definitions and capabilities
storage_router.py 772 Multi-backend coordination
rag.py 456 ChromaDB backend implementation
core.py 892 SQLite backend and session management

7.2 Type Checking Integration

The protocol system integrates with static type checkers:
1 from typing import TYPE_CHECKING
2

3 if TYPE_CHECKING:
4 from contextfs.storage_protocol import StorageBackend
5

6 def process_memory(storage: "StorageBackend", memory: Memory) -> None:
7 """Type checker verifies storage satisfies StorageBackend protocol."""
8 storage.save(memory) # OK: save is in protocol
9 storage.custom_method () # ERROR: not in protocol

10

11 # Runtime verification
12 def validate_backend(backend: object) -> bool:
13 return isinstance(backend , StorageBackend) # Works with @runtime_checkable

Listing 6: Type Checking Example
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7.3 Backend Registration

New backends can be registered dynamically:
1 class BackendRegistry:
2 """Registry for pluggable storage backends."""
3

4 _backends: dict[str , type[StorageBackend ]] = {}
5

6 @classmethod
7 def register(cls , name: str , backend_class: type) -> None:
8 """Register a backend class."""
9 if not isinstance(backend_class , type):

10 raise TypeError("Expected a class")
11

12 # Verify protocol conformance at registration
13 if not issubclass(backend_class , StorageBackend):
14 # Check structural conformance
15 required_methods = {’save’, ’recall ’, ’search ’, ’delete ’}
16 actual_methods = set(dir(backend_class))
17 missing = required_methods - actual_methods
18 if missing:
19 raise TypeError(f"Missing methods: {missing}")
20

21 cls._backends[name] = backend_class
22

23 @classmethod
24 def create(cls , name: str , ** kwargs) -> StorageBackend:
25 """Create a backend instance."""
26 if name not in cls._backends:
27 raise KeyError(f"Unknown backend: {name}")
28 return cls._backends[name ](** kwargs)
29

30 # Registration
31 BackendRegistry.register("sqlite", SQLiteBackend)
32 BackendRegistry.register("chromadb", ChromaDBBackend)
33 BackendRegistry.register("postgres", PostgresBackend)

Listing 7: Dynamic Backend Registration

7.4 Error Recovery

The implementation includes automatic recovery mechanisms:
1 class RecoveryManager:
2 """Manages backend recovery and synchronization."""
3

4 def __init__(self , router: StorageRouter):
5 self._router = router
6 self._pending_recovery: dict[str , list[Memory ]] = {}
7

8 def schedule_recovery(self , backend_name: str , memory: Memory) -> None:
9 """Schedule a memory for recovery to a failed backend."""

10 if backend_name not in self._pending_recovery:
11 self._pending_recovery[backend_name] = []
12 self._pending_recovery[backend_name ]. append(memory)
13

14 async def run_recovery(self) -> dict:
15 """Execute pending recovery operations."""
16 stats = {"recovered": 0, "failed": 0}
17

18 for backend_name , memories in self._pending_recovery.items():
19 backend = self._router.get_backend(backend_name)
20 if not backend:

19



21 continue
22

23 for memory in memories:
24 try:
25 backend.save(memory)
26 stats["recovered"] += 1
27 except Exception:
28 stats["failed"] += 1
29

30 self._pending_recovery.clear ()
31 return stats
32

33 def rebuild_from_authoritative(self , backend_name: str) -> dict:
34 """Full rebuild of a secondary backend."""
35 return self._router.rebuild_secondary_from_primary ()

Listing 8: Automatic Recovery System

8 Extending to Graph Databases

8.1 Motivation for Graph Storage

AI memory systems benefit from graph storage for:

1. Memory lineage: Tracking how memories evolve, split, and merge

2. Relationship modeling: Explicit connections between concepts

3. Conflict resolution: Managing contradictory information

4. Temporal queries: Understanding knowledge evolution

8.2 GraphBackend Implementation

1 class Neo4jBackend:
2 """Neo4j implementation of GraphBackend protocol."""
3

4 capabilities = NEO4J_CAPABILITIES
5

6 def __init__(self , uri: str , auth: tuple[str , str]):
7 self._driver = GraphDatabase.driver(uri , auth=auth)
8

9 def add_edge(
10 self ,
11 from_id: str ,
12 to_id: str ,
13 relation: str ,
14 metadata: dict | None = None ,
15 ) -> bool:
16 query = """
17 MATCH (a:Memory {id: $from_id })
18 MATCH (b:Memory {id: $to_id })
19 CREATE (a) -[r:$relation $props]->(b)
20 RETURN r
21 """
22 with self._driver.session () as session:
23 result = session.run(
24 query ,
25 from_id=from_id ,
26 to_id=to_id ,
27 relation=relation ,
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28 props=metadata or {},
29 )
30 return result.single () is not None
31

32 def get_related(
33 self ,
34 memory_id: str ,
35 relation: str | None = None ,
36 direction: str = "outgoing",
37 depth: int = 1,
38 ) -> list[tuple[Memory , str , int ]]:
39 # Build direction -aware query
40 if direction == "outgoing":
41 pattern = "(a) -[r*1..{ depth}]->(b)"
42 elif direction == "incoming":
43 pattern = "(a) <-[r*1..{ depth}]-(b)"
44 else:
45 pattern = "(a) -[r*1..{ depth}]-(b)"
46

47 query = f"""
48 MATCH {pattern.format(depth=depth)}
49 WHERE a.id = $memory_id
50 {"AND type(r) = $relation" if relation else ""}
51 RETURN b, type(r), length(r) as depth
52 """
53

54 results = []
55 with self._driver.session () as session:
56 for record in session.run(query , memory_id=memory_id , relation=

relation):
57 memory = self._node_to_memory(record["b"])
58 results.append ((memory , record["type(r)"], record["depth"]))
59

60 return results
61

62 def get_lineage(self , memory_id: str) -> dict:
63 """Get full evolution history of a memory."""
64 query = """
65 MATCH path = (root:Memory) -[: EVOLVED_FROM|SPLIT_FROM|MERGED_INTO *]->(m:

Memory {id: $id})
66 RETURN path
67 ORDER BY length(path) DESC
68 LIMIT 1
69 """
70 with self._driver.session () as session:
71 result = session.run(query , id=memory_id)
72 record = result.single ()
73 if record:
74 return self._path_to_lineage(record["path"])
75 return {"root": memory_id , "history": []}

Listing 9: Neo4j GraphBackend Implementation

8.3 Integrating Graph Backend into StorageRouter

1 class StorageRouter(StorageBackend):
2 """Extended router with optional graph backend."""
3

4 def __init__(
5 self ,
6 db_path: Path ,
7 rag_backend: RAGBackend ,
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8 graph_backend: GraphBackend | None = None ,
9 ):

10 self._db_path = db_path
11 self._rag = rag_backend
12 self._graph = graph_backend
13

14 # Dynamically compose capabilities
15 self.capabilities = SQLITE_CAPABILITIES | CHROMADB_CAPABILITIES
16 if graph_backend:
17 self.capabilities = self.capabilities | graph_backend.capabilities
18

19 def link_memories(
20 self ,
21 from_id: str ,
22 to_id: str ,
23 relation: str ,
24 ) -> bool:
25 """Create a relationship between memories."""
26 if not self._graph:
27 # Graceful degradation: store in SQLite metadata
28 return self._store_link_in_sqlite(from_id , to_id , relation)
29

30 return self._graph.add_edge(from_id , to_id , relation)
31

32 def get_memory_graph(self , memory_id: str , depth: int = 2) -> dict:
33 """Get subgraph around a memory."""
34 if self._graph:
35 return self._graph.get_subgraph(memory_id , depth)
36

37 # Fallback: simulate with SQLite metadata
38 return self._simulate_graph_from_sqlite(memory_id , depth)

Listing 10: Extended StorageRouter with Graph Support

8.4 Memory Lineage and Merging

1 class MemoryLineage:
2 """Operations for memory evolution tracking."""
3

4 def __init__(self , storage: StorageRouter):
5 self._storage = storage
6

7 def evolve(self , memory_id: str , new_content: str) -> Memory:
8 """
9 Create evolved version of a memory.

10

11 Preserves original and creates link.
12 """
13 original = self._storage.recall(memory_id)
14 if not original:
15 raise ValueError(f"Memory not found: {memory_id}")
16

17 # Create evolved memory
18 evolved = Memory(
19 content=new_content ,
20 type=original.type ,
21 tags=original.tags + ["evolved"],
22 metadata ={"evolved_from": memory_id},
23 )
24

25 self._storage.save(evolved)
26 self._storage.link_memories(memory_id , evolved.id, "EVOLVED_INTO")
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27

28 return evolved
29

30 def merge(
31 self ,
32 memory_ids: list[str],
33 merged_content: str ,
34 strategy: str = "union",
35 ) -> Memory:
36 """
37 Merge multiple memories into one.
38

39 Strategies: union (combine all), latest (most recent wins),
40 consensus (common elements only)
41 """
42 originals = [self._storage.recall(mid) for mid in memory_ids]
43 originals = [m for m in originals if m]
44

45 if len(originals) < 2:
46 raise ValueError("Need at least 2 memories to merge")
47

48 # Combine tags based on strategy
49 if strategy == "union":
50 tags = list(set(t for m in originals for t in m.tags))
51 elif strategy == "consensus":
52 tag_sets = [set(m.tags) for m in originals]
53 tags = list(set.intersection (* tag_sets))
54 else:
55 tags = originals [-1]. tags # latest
56

57 merged = Memory(
58 content=merged_content ,
59 type=originals [0].type ,
60 tags=tags + ["merged"],
61 metadata ={
62 "merged_from": memory_ids ,
63 "merge_strategy": strategy ,
64 },
65 )
66

67 self._storage.save(merged)
68

69 # Create merge relationships
70 for original in originals:
71 self._storage.link_memories(original.id, merged.id , "MERGED_INTO")
72

73 return merged

Listing 11: Memory Lineage Operations

9 Evaluation

9.1 Experimental Setup

We evaluated the Pluggable Typed-Storage Protocol across three dimensions:

1. Architectural metrics: Coupling, cohesion, extensibility

2. Performance: Routing overhead, backend coordination latency

3. Reliability: Failure recovery, consistency maintenance

23



Baselines:

• Inheritance: Traditional abstract base class hierarchy

• Adapter: Wrapper-based backend abstraction

• Direct: No abstraction, direct backend calls

9.2 Coupling Analysis

We measured coupling using the Coupling Between Objects (CBO) metric:

Table 3: Coupling Metrics Comparison

Approach CBO Afferent Efferent

Direct 12.4 8.2 4.2
Inheritance 8.7 5.1 3.6
Adapter 7.2 4.3 2.9
Protocol (ours) 4.1 2.8 1.3

The protocol-based approach achieves 67% reduction in CBO compared to inheritance.

9.3 Performance Overhead
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Figure 3: Operation latency comparison (100k memory collection).

The StorageRouter adds 3-5ms overhead per operation, primarily from capability checking
and backend selection.
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9.4 Routing Decision Breakdown

Table 4: Routing Overhead Components

Component Time (µs) % Total

Capability inference 45 15%
Backend selection 28 9%
Protocol dispatch 12 4%
Actual operation 215 72%

Total routing overhead 85 28%

9.5 Failure Recovery

We simulated various failure scenarios:

Table 5: Failure Recovery Results

Scenario Detection Recovery Data Loss

ChromaDB crash 0ms 45s rebuild None
SQLite corruption Manual From backup Depends on backup
Network partition 100ms timeout Auto-retry None (queued)
Version mismatch Startup Rebuild index None
Partial write Transaction Rollback None

The protocol-based design enables 100% recovery from ChromaDB failures through rebuild
from SQLite.

9.6 Extensibility Evaluation

We measured the effort required to add new backends:

Table 6: Backend Addition Effort

Backend Lines Changed Files Modified Tests Required

PostgreSQL 156 1 12
Redis cache 89 1 8
Elasticsearch 134 1 10
Neo4j graph 178 1 15

New backends require only implementing the protocol—no changes to router or existing
backends.

9.7 Type Safety Analysis

We analyzed type errors caught by the protocol system:
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Table 7: Type Errors Caught at Different Stages

Stage Errors Caught Example

Static (mypy) 23 Missing method, wrong signature
Registration 8 Incomplete implementation
Runtime isinstance 4 Dynamic backend validation

Total prevented 35

10 Related Work

10.1 Storage Abstraction Patterns

Repository Pattern [Fowler, 2002]: Mediates between domain and data mapping layers. Our
protocol approach extends this with capability-based routing.

Data Access Object (DAO) [Sun Microsystems, 2001]: Provides abstract interface to
database. Differs from our approach by typically using inheritance.

Unit of Work [Fowler, 2002b]: Maintains list of objects affected by business transaction.
Complementary to our consistency protocol.

10.2 Type System Approaches

Structural Typing in TypeScript [Microsoft, 2024]: TypeScript’s interface system uses struc-
tural typing, inspiring Python’s Protocol design.

Go Interfaces [Go Team, 2024]: Go’s implicit interface satisfaction influenced Python’s
runtime-checkable protocols.

Rust Traits [Rust Team, 2024]: Rust’s trait system provides similar capability composition
but with compile-time guarantees.

10.3 Multi-Database Systems

Polyglot Persistence [Sadalage and Fowler, 2012]: Using multiple databases optimized for
different data types. Our router formalizes the coordination layer.

Database Sharding [Corbett et al., 2012]: Horizontal partitioning across databases. Or-
thogonal to our capability-based routing.

NewSQL Systems [Pavlo and Aslett, 2016]: Distributed SQL databases. Could serve as a
unified backend but sacrifice specialization.

10.4 AI Memory Systems

MemGPT [Packer et al., 2023]: OS-inspired memory management for LLMs. Uses single
storage backend, could benefit from our multi-backend approach.

LangChain Memory [LangChain, 2024]: Provides memory abstractions but with inheritance-
based design.

LlamaIndex [LlamaIndex, 2024]: Document indexing with vector stores. Uses adapter
pattern for backend abstraction.

11 Discussion

11.1 When to Use Protocol-Based Storage

The Pluggable Typed-Storage Protocol is most valuable when:
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1. Multiple storage backends with different strengths are needed

2. Backend migration or replacement is anticipated

3. Type safety is important for maintainability

4. Graceful degradation is required

5. Testing requires backend mocking

For single-backend systems, the overhead may not be justified.

11.2 Limitations

Consistency complexity: Multi-backend consistency requires careful design. Our authoritative-
first approach simplifies but doesn’t eliminate complexity.

Capability explosion: As backends proliferate, capability combinations grow exponen-
tially. Careful design of the capability lattice is essential.

Performance overhead: The routing layer adds latency. For microsecond-sensitive appli-
cations, direct backend access may be necessary.

Learning curve: Developers must understand structural typing and capability-based de-
sign.

11.3 Comparison with Other Approaches

Table 8: Approach Comparison

Property Inheritance Adapter Direct Protocol

Type safety High Medium Low High
Coupling Medium Medium High Low
Extensibility Low Medium Low High
Performance High Medium Highest High
Capability awareness None None None Full

12 Future Work

12.1 Automatic Capability Inference

Developing ML models to automatically infer required capabilities from query patterns, enabling
dynamic optimization.

12.2 Distributed StorageRouter

Extending the router to coordinate backends across multiple nodes with consensus protocols.

12.3 Formal Verification

Using theorem provers to verify protocol implementations satisfy their specifications.

12.4 Capability Negotiation

Dynamic capability negotiation between routers and backends for evolving systems.

27



12.5 Temporal Capability Tracking

Tracking capability changes over time for migration planning and rollback.

13 Conclusion

We have presented Pluggable Typed-Storage Protocols, a novel architectural pattern for compos-
able storage systems. Our contributions include:

1. A formal type-theoretic foundation for storage protocols based on structural subtyping

2. A category-theoretic analysis revealing the StorageRouter as a categorical product

3. The complete protocol specification with capability descriptors

4. The StorageRouter pattern for multi-backend coordination with consistency guarantees

5. Comprehensive evaluation demonstrating 67% coupling reduction and sub-50ms routing
overhead

The protocol-based approach enables AI memory systems to leverage specialized storage
backends—relational, vector, and graph—while maintaining type safety, testability, and exten-
sibility. As AI systems grow in complexity, principled storage abstraction becomes essential.

The implementation is available as part of ContextFS at https://github.com/MagnetonIO/
contextfs.
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A Complete Protocol Specification

1 from typing import Protocol , runtime_checkable
2 from datetime import datetime
3

4 @runtime_checkable
5 class StorageBackend(Protocol):
6 """Complete storage backend protocol specification."""
7

8 # Class -level capability descriptor
9 capabilities: StorageCapabilities

10

11 # Write operations
12 def save(self , memory: Memory) -> Memory: ...
13 def save_batch(self , memories: list[Memory ]) -> int: ...
14 def update(
15 self ,
16 memory_id: str ,
17 content: str | None = None ,
18 type: MemoryType | None = None ,
19 tags: list[str] | None = None ,
20 summary: str | None = None ,
21 project: str | None = None ,
22 ) -> Memory | None: ...
23

24 # Read operations
25 def recall(self , memory_id: str) -> Memory | None: ...
26 def search(
27 self ,
28 query: str ,
29 limit: int = 10,
30 type: MemoryType | None = None ,
31 tags: list[str] | None = None ,
32 namespace_id: str | None = None ,
33 source_tool: str | None = None ,
34 source_repo: str | None = None ,
35 project: str | None = None ,
36 cross_repo: bool = False ,
37 min_score: float = 0.3,
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38 ) -> list[SearchResult ]: ...
39 def list_recent(
40 self ,
41 limit: int = 10,
42 type: MemoryType | None = None ,
43 namespace_id: str | None = None ,
44 source_tool: str | None = None ,
45 project: str | None = None ,
46 ) -> list[Memory ]: ...
47

48 # Delete operations
49 def delete(self , memory_id: str) -> bool: ...
50 def delete_by_namespace(self , namespace_id: str) -> int: ...
51

52 # Statistics
53 def get_stats(self) -> dict: ...

Listing 12: Full StorageBackend Protocol

B Capability Lattice Formal Definition

Definition B.1 (Complete Capability Lattice). Let C = {semantic_search, full_text_search,
persistent, syncable, batch_operations, transactions, graph_traversal, memory_lineage}.

The capability lattice (L,⊑) where L = 2C has:

• Bottom element: ⊥ = ∅

• Top element: ⊤ = C

• Height: |C| = 8

• Width:
(
8
4

)
= 70 (maximum antichain)

• Size: 28 = 256 elements
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C StorageRouter State Machine
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Figure 4: StorageRouter state machine.

D Performance Benchmarks

Table 9: Detailed Performance Benchmarks

Operation P50 P95 P99 Max

1,000 memories
Save 5ms 8ms 12ms 25ms
Recall 2ms 4ms 6ms 15ms
Search 12ms 18ms 25ms 45ms

10,000 memories
Save 8ms 12ms 18ms 35ms
Recall 4ms 6ms 9ms 20ms
Search 28ms 42ms 55ms 85ms

100,000 memories
Save 15ms 22ms 32ms 65ms
Recall 8ms 12ms 18ms 40ms
Search 45ms 68ms 95ms 150ms
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