Typed Memory Structures for AI Agents:
A Formal Framework Based on ContextFS Principles

Matthew Long
Independent Researcher, Chicago, IL
matthew@yonedaai.com

The YonedaAl Collaboration
YonedaAl Research Collective

January 8, 2026

Abstract

We present a formal type-theoretic framework for Al memory systems grounded in
three foundational principles derived from the ContextFS architecture: (1) schemas shape
reasoning—the structure of memory necessarily constrains the structure of possible infer-
ences; (2) types enforce validity—invalid memory states should be unrepresentable in the
type system rather than detected post-hoc; and (3) versioning preserves agent continuity—
the causal structure of belief revision must be maintained to enable reasoning about why
memory changed, not merely that it did. We formalize these principles using dependent
type theory, establishing memory types as schema-indexed structures where inhabitants
carry proofs of invariant satisfaction. We prove key theorems including the Unrepresentabil-
ity Theorem (invalid states cannot be constructed), the Schema-Reasoning Correspondence
(memory structure determines inference space), and Memory Compositionality (valid mem-
ories compose to valid memories). The framework provides compile-time guarantees about
memory validity, sound inference over memory contents, explainable belief revision through
derivation tracking, and compositional memory architecture. We demonstrate the practical
applicability through a complete implementation architecture mapping to TypeScript and
provide example schema libraries for common Al agent memory patterns.

Contents

(1__Introductionl
(1.1 The Crisis of Untyped Memory|
(1.2 The ContextFS Principles|
[L3 Contributionsl

2__Formal Foundations|
[2.1 The Category ot Memory Types|.,
[2.2 Memory Types as Dependent Types|
[2.3 T'he Unrepresentability Principle] oo o0
[2.4 Proot-Relevant Memory| o

[3 Schemas and Reasoning]
[3.1 The Schema-Reasoning Correspondencel
[3.2 Query Languages and T'ype Satety|o

S OU O i W s W oW W

- =

3.3 Inference Rules as Types|.
I;i.l llls: llllgls:ll!g l‘;]lli!:s:l
[4 Versioned Memory and Agent Continuity|
4.1 The Temporal Structure of Belief|f
42 Dernvation Irees
4.3 Reasoning About Memory Change|
4.4 Causal Consistency|
4.5 Agent Identity Through Time|
> The ContextFS Type System|
b.1 Type Grammar|
0.2 Formation Rules
I}i.;i llllls!!l!]!;l‘l!!ll l;llls: |
.4 Elmimation Rulesl.
[95.5 Computation Rules|
9.6 Subtyping and Schema Evolution|
(6 Memory Composition|
6.1 'The Compositional Property|.
6.2 Applications of Compositionality]
6.3 Memory Morphismg
6.4 Functorial Properties|
[7 Implementation Architecture|
[7.1 The ContextF'S Memory Store Interface| .
[7.2 Schema Definition Language|l.
[7.3 Versioning Implementation|.
[7.4 Example Schema Library|
[8 Theoretical Implications|
8.1 Memory as Proot-Carrying Data]
8.2 Agent Continuity as Narrative Coherence)
8.3 T'he Epistemological Interpretation|
8.4 Computability and Decidability]
[9 Comparison with Existing Approaches|
I!z,l !s:! !gzl :‘2!!215::2' ----------------
9.2 Key-Value Stores|
9.3 File Systems|. L.
9.4 Retrieval-Augmented Generation|
(10 Future Work]
[10.1 Distributed Agent Memories|.
[10.2 Probabilistic Types
[10.3 Proof Assistants for Schema Design|. . . .
[10.4 Integration with Neural Systems|
11 Conclusion|

[A° Complete Type Definitions|

(B Prootf of Compositionality|

14
14
14
14
15

15
15
15
16
17

18
18
18
19
19

19
19
19
20
20

20
20
20
20
20

20

21

22

1 Introduction

1.1 The Crisis of Untyped Memory

Contemporary Al systems, particularly large language models and autonomous agents, increas-
ingly rely on persistent memory to maintain context across interactions, track beliefs about the
world, and preserve continuity of identity. Yet the predominant architectural approaches to Al
memory suffer from a fundamental flaw: they treat memory as data rather than structure.

Consider the landscape of current implementations:

e Vector stores: Embeddings with metadata—mo schema, no type safety, semantic simi-

larity as the sole organizational principle

e Key-value stores: Arbitrary strings mapping to arbitrary values, with implicit structure

enforced only by convention

e File systems: Unstructured text with naming conventions, where “memory” is conflated

with “storage”

e Retrieval-Augmented Generation (RAG): Chunk-based retrieval with no guarantees

about consistency or completeness

These approaches share a common failure mode: they permit the construction of invalid
memory states. A vector store can contain contradictory embeddings. A key-value store can
reference nonexistent entities. A file system can hold malformed data that violates implicit
invariants. The invalidity is discovered—if at all—only at runtime, when the corrupted memory
produces erroneous behavior.

This is not merely an engineering inconvenience. It reflects a deeper conceptual confusion
about the nature of memory in cognitive systems. Memory is not passive storage; it is the
substrate upon which reasoning operates. The structure of memory shapes what can be thought,
what can be inferred, what can be remembered and why.

1.2 The ContextFS Principles

The ContextF'S project introduces a paradigm shift in how we conceptualize Al memory. Rather
than treating memory as files to be read and written, ContextFS treats memory as a typed,
versioned structure where validity is guaranteed by construction. Three principles emerge as
foundational:

Principle 1 (Schemas): The structure of memory shapes the structure of reason-
ing.

Principle 2 (Types): Invalid memory states should be unrepresentable, not just
“files with bad data.”

Principle 3 (Versioning): Agent continuity means something—you might need to
reason about why a memory changed, not just that it did.

These principles suggest that memory should be formalized as a typed, versioned structure
where the type system itself enforces memory validity. This paper develops that formalization
rigorously.

1.3 Contributions

This paper makes the following contributions:

1. We formalize Al memory as a dependent type indexed by schemas, proving that invalid
memory states are unrepresentable by construction (Section .

2. We establish the Schema-Reasoning Correspondence, showing how memory structure de-
termines the space of valid inferences (Section [3)).

3. We develop a theory of versioned memory that preserves agent continuity through causal
derivation tracking (Section [).

4. We present the complete ContextFS type system with formation, introduction, and elimi-
nation rules (Section []).

5. We prove Memory Compositionality, enabling modular and hierarchical memory architec-
tures (Section [6).

6. We provide a complete implementation architecture with TypeScript bindings and example
schema libraries (Section [7)).

1.4 Related Work

Our work draws on several traditions. From dependent type theory [I. 2], we take the insight
that types can express rich invariants and that proofs can be data. From the Curry-Howard
correspondence [0l [7], we understand that our memory types correspond to propositions and
their inhabitants to proofs of validity. From belief revision theory [8 9], we adopt the concern
for rational belief change and the importance of tracking revision history.

The application of type theory to data management has precedent in dependently-typed
databases [10] and schema evolution [I1]. Our contribution is to extend these ideas specifically to
Al memory systems, where the cognitive interpretation—memory as the substrate of reasoning—
motivates additional requirements around continuity and derivation.

Version control systems, particularly Git, provide inspiration for our versioning model, but
our framework differs in tracking not just what changed but why, with change reasons that
capture epistemic provenance.

1.5 Paper Organization

The remainder of this paper is organized as follows. Section [2establishes the formal foundations,
including the category of memory types and the Unrepresentability Theorem. Section [3| devel-
ops the Schema-Reasoning Correspondence. Section | presents versioned memory and agent
continuity. Section [5] gives the complete type system. Section [6] proves compositionality results.
Section [7| provides implementation architecture. Section [§] discusses theoretical implications.
Section [9] compares with existing approaches. Section [I0] outlines future work, and Section
concludes.

2 Formal Foundations

2.1 The Category of Memory Types

We begin by establishing the categorical context for our formalization.

Definition 2.1 (Category Mem). Let Mem be a category where:
e Objects are memory types M
e Morphisms f: M — M’ are memory transformations that preserve validity invariants
e Identity idy; : M — M is the identity transformation

e Composition (go f): M — M" for f: M — M’ and g : M' — M"

The key insight is that morphisms in Mem are not arbitrary functions—they must pre-
serve the validity invariants encoded in the types. This categorical structure will later support
composition and schema evolution.

Remark 2.1. The category Mem is a subcategory of Set, but with restricted morphisms. This
restriction is what gives the category its computational significance: morphisms correspond to
safe memory transformations.

2.2 Memory Types as Dependent Types
Definition 2.2 (Memory Type). A memory type M is a dependent type:

M : Schema — Type

where Schema specifies the structure and Type is the universe of valid inhabitants.

The dependency on Schema is crucial: it ensures that memory structure is not incidental
but constitutive of the memory type itself. Two memories with different schemas are different
types, even if their underlying data representations coincide.

Definition 2.3 (Schema). A schema S is a record type consisting of:

Fields : List(Name x Type)
Schema := ¢ Invariants : List(Constraint Fields)
Relations : List(Relation Fields)

The components serve distinct purposes:

e Fields specifies the data content—what information the memory holds

¢ Invariants specifies validity constraints—what configurations are meaningful

e Relations specifies structural relationships—how fields depend on each other
Definition 2.4 (Constraint). A constraint over fields F is a predicate:

Constraint F' := Record F' — Prop
where Prop is the universe of propositions.
Definition 2.5 (Relation). A relation over fields F' is a specification of dependencies:
Relation F' := {from : FieldRef F’ to : FieldRef F kind : RelationKind}

where RelationKind € {references, depends_on,implements, . ..}.

2.3 The Unrepresentability Principle

The central technical contribution of typed memory is the unrepresentability of invalid states.
This is achieved by defining memory types as dependent pairs (sigma types).

Definition 2.6 (Memory Inhabitant). For a schema S, the type Mem[S] is defined as:
Mem[S] := X (data : Record S.Fields). AllSat S.Invariants data

where AllSat c¢s d is the proposition that all constraints in cs are satisfied by d.

Definition 2.7 (All Satisfied). For constraints cs = [c1, ..., ¢,] and data d:

AllSat ¢s d :== c1(d) Aca(d) A+ -+ A cp(d)

Any inhabitant of Mem[S] consists of two components: the data itself, and a proof that
all invariants hold. This proof is not optional metadata—it is part of the type, required for
construction.

Theorem 2.1 (Invalid State Unrepresentability). For a well-formed memory type Mem|[S], there
exists no term m : Mem|[S] such that m violates any constraint in S.Invariants.

Proof. By construction of the type Mem[S]. Suppose for contradiction that there exists m :
Mem[S] with m = (data, pf) such that some constraint ¢ € S.Invariants is violated by data.

By Definition pf has type AllSat S.Invariants data. By Definition this requires
¢(data) to hold for all ¢ € S.Invariants.

But we assumed c¢(data) does not hold, so pf cannot exist, contradicting the assumption
that m is well-typed. O

This theorem is the cornerstone of our framework. It transforms memory validity from a
runtime property (“check if the data is valid”) to a static property (“the type ensures validity”).

Example 2.1 (Entity Reference Integrity). Consider a memory schema for task tracking:

TaskSchema = {
Fields : [(id, Taskld),
assignee, Userld),

status, Status),

~~ I~

completed _at, Option DateTime)],
Invariants : [At. (t.status = Completed) < (isSome t.completed at),
At. t.assignee € Users| }

A value of type Mem|[TaskSchema] cannot represent:
e A task marked complete without a completion timestamp
e A task assigned to a nonexistent user

The type system rejects such constructions at compile time.

2.4 Proof-Relevant Memory

An important feature of our formalization is that memory is proof-relevant: the proofs of invari-
ant satisfaction are retained as part of the memory value, not discarded after type-checking.

Definition 2.8 (Proof-Relevant Memory). A memory value m : Mem[S] carries:
1. The data 71(m) : Record S.Fields
2. The validity proof mo(m) : AllSat S.Invariants (71(m))

Both components are accessible and can be used in subsequent computation.

The proof-relevance enables meta-reasoning: an agent can not only access its memories but
also access the justification for why those memories are valid.

Proposition 2.2 (Proof Accessibility). For any m : Mem[S] and any invariant ¢ € S.Invariants,
there ezists a witness w such that w proves c(mwi(m)).

Proof. By Definition m2(m) has type AllSat S.Invariants (m1(m)). By Definition [2.7 this
is a conjunction including ¢(m1(m)). The witness w is the projection of ma(m) onto the ¢
component.]

3 Schemas and Reasoning

3.1 The Schema-Reasoning Correspondence

We now establish the fundamental relationship between memory structure and inference capa-
bility.
Proposition 3.1 (Schema-Reasoning Correspondence). The structure of schema S determines
the space of valid inferences over Mem|S].
To make this precise, we define the type of valid inferences.
Definition 3.1 (Inference Type). For a schema S, define:
Inference[S] := (m : Mem[S]) — (query : Query[S]) — Answer[S]

where Query[S] is the type of well-formed queries over S and Answer[S] is the type of valid
answers.

The schema constrains both dimensions:

1. What can be queried: Only fields in S.Fields can be referenced. A query about a
nonexistent field is ill-typed.

2. What invariants can be assumed: Inference rules can freely assume that S.Invariants
hold, enabling sound derivations that would be unsound for untyped memory.

Example 3.1 (Inference from Structure). Given a conversation memory schema:

ConversationSchema := {
Fields : [(messages, List Message),
(participants, NonEmpty (Set Userld)),
(last_ activity, DateTime)],
Invariants : [Ac. length c.messages > 0 =

c.last_activity > max (map timestamp c.messages)| }

The schema enables the inference rule:
¢ : Mem[ConversationSchema] c.messages # |]

— " LastActivity-Sound
c.last_activity > max(timestamps(c.messages))

This inference is sound by construction—no runtime check is needed because the type system
guarantees the invariant holds.

3.2 Query Languages and Type Safety

The Schema-Reasoning Correspondence suggests that query languages over typed memory should
themselves be typed.

Definition 3.2 (Typed Query). For schema S, a typed query has the form:
Query[S] :== X (f : Name). f € S.Fields
This definition ensures that queries can only reference fields that exist. An attempt to query
a nonexistent field is a type error, caught at compile time.
Lemma 3.2 (Query Totality). Fvery well-typed query over Mem[S] produces a well-typed answer.

Proof. Let ¢ : Query[S] and m : Mem[S]. By Definition q = (f,pf) where pf proves
f € S.Fields.

Since m(m) : Record S.Fields, the field f is guaranteed to exist in mj(m). Projection is
therefore total, and the answer 71(m).f is well-typed with type S.Fields|f]. O

3.3 Inference Rules as Types

Following the Curry-Howard correspondence, we can represent inference rules as types.

Definition 3.3 (Inference Rule Type). An inference rule over schema S is a type of the form:
Rule :=1II (m : Mem[S]). P(m) — Q(m)
where P and @) are predicates over memories.

An inhabitant of this type is a proof of the rule’s soundness—a function that transforms
evidence for P(m) into evidence for Q(m) for any memory m.

Example 3.2 (Soundness Proof as Program). Consider an inference rule: “If a task is assigned
and overdue, it requires attention.”

RequiresAttention : I (¢ : Mem[TaskSchemal]).

(isAssigned(t) A isOverdue(t)) — NeedsAttention(t)

An implementation of this type is a constructive proof of the rule’s validity.

3.4 The Inference Lattice

Different schemas induce different inference capabilities. We can partially order schemas by their
inference power.

Definition 3.4 (Schema Ordering). Define S; < Sy (51 is weaker than Sy”) iff every inference
valid over Mem[S1] is also valid over Mem[S3].

Proposition 3.3 (Inference Lattice). The relation < forms a partial order on schemas, with:
e Join: Sy U Sy s the schema enabling inferences valid in either
o Meet: S Sy is the schema enabling only inferences valid in both

This lattice structure allows reasoning about the relative expressiveness of different memory
organizations.

4 Versioned Memory and Agent Continuity

4.1 The Temporal Structure of Belief

Memory is not static. Beliefs evolve as agents receive new information, make inferences, correct
errors, and forget irrelevant details. Agent continuity requires not just the current state but the
history of how beliefs changed.

This requirement goes beyond simple version control. We need to track not only what
changed but why—the epistemic provenance of each memory state.

Definition 4.1 (Versioned Memory). A versioned memory over schema S is a structure:

Versioned[Mem([S]] := {
Timeline : List (Timestamped (Mem[S] x ChangeReason))
current : Mem([S]

proof : last Timeline = current }

The Timeline records the complete history of memory states, each paired with the reason for
the transition. The current field provides efficient access to the present state. The proof field
ensures consistency between timeline and current state.

Definition 4.2 (Change Reason). The type ChangeReason captures why memory changed:

ChangeReason := | Observation (source : Source, evidence : Evidence)
| Inference (rule : InferenceRule, premises : List Mem[S])
| Correction (previous : Mem[S], reason : String)
| Decay (factor : Float — Float)

These constructors capture the fundamental modes of belief change:

e Observation: Memory changed because of new sensory or informational input
e Inference: Memory changed because of an inference from existing beliefs
e Correction: Memory changed because a previous state was recognized as erroneous

e Decay: Memory changed through gradual confidence reduction (forgetting)

4.2 Derivation Trees

The history of memory states forms a derivation structure that captures the causal dependencies
between beliefs.

Definition 4.3 (Memory Derivation). A derivation D of memory state m is a tree where:
e Nodes are memory states m; : Mem[S]
e Edges (m;, m;) are labeled with ChangeReason values
¢ Root is the initial memory state myg

e Leaves include the current state m

Observation Observation

Correction

Q

Figure 1: A memory derivation tree showing how state m derives from initial state mg through
observations, inference, and correction.

Theorem 4.1 (Derivation Soundness). For any derivation D of m : Mem[S], every intermediate
state m; in D is also of type Mem[S].

Proof. By induction on the structure of derivation D.

Base case: The root mg : Mem[S] by assumption (initial state is well-typed).

Inductive case: Suppose m; : Mem[S] and there is an edge (m;, m;) labeled with change
reason r. We must show m; : Mem[S].

By definition of ChangeReason, each constructor produces a valid memory transformation:

e Observation: The observation handler must produce Mem[S] (by typing of observation
handlers)

e Inference: Inference rules are typed as Mem[S] — Mem[S]

e Correction: Corrections replace one valid state with another valid state

e Decay: Decay transforms confidence values while preserving type validity

In all cases, m; : Mem[S]. O

This theorem ensures that the entire history of an agent’s memory consists of valid states—
there are no “corrupted intermediate states” hidden in the timeline.

4.3 Reasoning About Memory Change

The versioning structure enables powerful meta-reasoning capabilities.

Definition 4.4 (Belief Revision Query). A belief revision query has the form:
WhyChanged : (f : Name) — (v; : Value) — (v2 : Value) —
Versioned[Mem([S]] — Option ChangeReason

Example 4.1 (Tracing Belief Change). Suppose an agent’s memory includes project informa-
tion:

ProjectMemory = {
Fields : [(deadline, DateTime),
(confidence, Float),

(sources, List Source)] }
If deadline changes from January 15 to January 22, the agent can query:

WhyChanged “deadline” (Jan 15) (Jan 22) memory

— Some (Observation (“email from PM”, “reschedule notice”))

This enables natural language explanations: “I updated the deadline because I received an
email from the project manager announcing a schedule change.”

10

4.4 Causal Counsistency

Versioned memory must maintain causal consistency—the recorded history must reflect actual
causal relationships.

Definition 4.5 (Causal Consistency). A versioned memory v : Versioned[Mem[S]] is causally
consistent iff for every edge (m;, m;) in its derivation with label 7:

e If r = Observation(s,), then evidence e from source s justifies the change from m; to m;
e If r = Inference(p, ps), then m; follows from applying rule p to premises ps

e If r = Correction(m;, reason), then m; corrects an identified error in m;

o If r = Decay(f), then m; is m; with confidence values transformed by f

Theorem 4.2 (Causal Closure). If versioned memory v is causally consistent, then every belief
in current(v) has a traceable causal chain to observations or axioms.

Proof. By induction on the derivation tree. Each node either is the root (an axiom/initial state)
or has an incoming edge with a justified ChangeReason. Following these edges backward from
any belief eventually reaches the root. O

4.5 Agent Identity Through Time

Versioned memory provides a formal account of agent identity that persists through belief change.
Definition 4.6 (Agent Continuity). An agent exhibits continuity over time interval [t1, to] iff:
1. Its memory evolution forms a valid derivation (Theorem [4.1))
2. Each transition has a justified ChangeReason (Definition
3. The derivation is causally closed (Theorem #.2))

This definition rules out several pathological cases:

e Discontinuous belief change: Beliefs appearing without cause (no incoming edge in
derivation)

e Incoherent belief states: Memory violating invariants (ruled out by type system)

e Untraceable reasoning: Cannot explain why beliefs changed (no ChangeReason labels)

5 The ContextFS Type System

We now present the complete type system for ContextF'S memory.

11

5.1 Type Grammar
Definition 5.1 (Type Grammar).

BaseType := String | Int | Float | Bool | DateTime | UUID
EntityType == Entity Name Schema
RefType == Ref EntityType
OptionType == Option Type
ListType = List Type
SetType ::= Set Type where Ord Type
MapType == Map KeyType ValueType
UnionType = Type; | Typey | - -+ | Type,
RecordType = {f1 : Typey,..., fn: Type,}
MemoryType ::= Mem Schema

Versioned Type := Versioned MemoryType

5.2 Formation Rules

Formation rules specify when a type expression is well-formed.

S : Schema
Mem[S] : Type Mem-Form
M : MemoryType
Versioned[M] : Type

Ver-Form

Fields : List(Name x Type) Invariants : List(Constraint Fields)
S - Schema Schema-Form

E : EntityType

Ref B : Type Lef-Form

5.3 Introduction Rules

Introduction rules specify how to construct values of a type.

data : Record S.Fields pf : AllSat S.Invariants data
MkMem data pf : Mem|[S]

Mem-Intro

m : Mem[S] h: List (Timestamped A) last(h) =m
MkVer m h : Versioned[Mem[S]]

Ver-Intro

s : Source e : Evidence
Observation s e : ChangeReason

Obs-Intro

p : InferenceRule ps : List Mem[S]

Inference p ps : ChangeReason Inf-Intro

12

5.4 Elimination Rules

Elimination rules specify how to use values of a type.

m : Mem[S] f € dom(S.Fields)
m.f : S.Fields[f]

Mem-Elim

v : Versioned[M]
current v : M

Ver-Elim-Current

v : Versioned[M|
history v : Timeline

Ver-Elim-History

m : Mem[S]
validityProof m : AllSat S.Invariants (71 (m))

Proof-Elim

5.5 Computation Rules

Computation rules specify how elimination interacts with introduction (beta reduction).

(MkMem data pf).f = data.f
current (MkVer m h) =m

history (MkVer m h) = h

5.6 Subtyping and Schema Evolution

Schemas evolve over time as requirements change. We need a notion of safe schema evolution.
Definition 5.2 (Schema Subtyping). Schema S’ is a subtype of S (written S" <: S) iff:

1. S’.Fields O S.Fields (extension with new fields)

2. S'.Invariants O S.Invariants (additional constraints)

3. S’.Relations D S’.Relations (additional relations)

Theorem 5.1 (Safe Schema Evolution). If S’ <: S then there exists a safe projection:
project : Mem[S'] — Mem|[S]

Proof. Let m' : Mem[S’] with m’ = (datd’, pf’).

Define data = data’|s.Fielgs (restriction to S’s fields). This is well-defined because S’.Fields D
S.Fields.

For each comstraint ¢ € S.Invariants, we have ¢ € S’.Invariants (by subtyping). Since pf’
proves all constraints in S’.Invariants hold for data’, it proves ¢ holds for data’.

Since ¢ only references fields in S.Fields and data = data’|s Fielqs, we have c(data) holds.

Thus MkMem data pf : Mem[S] where pf is constructed from the relevant projections of

pf’. O

This theorem enables schema migration: data in the new schema can be safely projected to
the old schema, preserving type safety.

13

6 Memory Composition

6.1 The Compositional Property

Real agent memories are not monolithic—they consist of multiple interacting subsystems. We
need compositional operators that preserve type safety.

Definition 6.1 (Schema Product). For schemas S; and Sy with disjoint field names, define:

Fields : S;.Fields U S5.Fields
S X Sy = Invariants : .Sj.Invariants U Ss.Invariants
Relations : S;.Relations U S5.Relations

Theorem 6.1 (Memory Compositionality). If m; : Mem[S1] and ma : Mem[Ss| are valid mem-
ories over schemas with disjoint field names, their composition:

mi ® mg : Mem[S] x So]
15 also valid.

Proof. Let my = (datay, pf,) and ma = (datag, pfs).
Define data = datay U datay (disjoint union of fields).
For invariants in Sj.Invariants: each c only references fields in Sp.Fields, which are present in
data. Since pf, proves c(datay) and data|s, Fields = datai, we have c(data).
Symmetrically for invariants in Ss.Invariants.
Thus all invariants in (S7 x S2).Invariants = Sy.Invariants U S.Invariants are satisfied.
Therefore m; ® my := MkMem data pf : Mem[S; x So] is well-typed. O

6.2 Applications of Compositionality

The compositionality theorem enables several architectural patterns:

1. Modular memory design: Domain-specific memories (episodic, semantic, working) can
be developed independently and composed.

2. Safe memory sharing: Multiple agents with compatible schemas can share memory
components.

3. Hierarchical structures: Memories can be nested through repeated composition.
Example 6.1 (Composite Agent Memory). An agent might have composite memory:
AgentMemory = IdentityMem x EpisodicMem x SemanticMem x WorkingMem

Fach component is developed and validated independently; composition preserves all guarantees.

6.3 Memory Morphisms

Definition 6.2 (Memory Morphism). A memory morphism ¢ : Mem[S;] — Mem[Sy] is a
function that:

1. Transforms data: ¢g4 : Record Sy.Fields — Record Ss.Fields
2. Preserves validity: if AllSat S.Invariants d then AllSat Sy.Invariants (¢ gat4(d))

Proposition 6.2 (Morphism Composition). Memory morphisms compose: if ¢ : Mem[S;] —
Mem[S2] and v : Mem[Sz] — Mem|[S3], then 1 o ¢ : Mem[S1] — Mem[Ss].

Proof. Let m; : Mem[S;]. Then ¢(m;i) : Mem[S3] by assumption on ¢. Then ¢ (¢(m1)) :
Mem[S3] by assumption on . Define (1) 0 ¢)(m1) = ¥(p(mq)). O

This confirms that Mem is indeed a category (Definition [2.1)).

14

6.4 Functorial Properties

Proposition 6.3 (Versioning is a Functor). The operation Versioned[—] extends to a functor
Versioned : Mem — Mem.

Proof. For objects: Versioned maps memory types to versioned memory types.
For morphisms: Given ¢ : Mem[S;] — Mem[Ss], define Versioned(¢) : Versioned[Mem[S]] —
Versioned[Mem[Ss]] by applying ¢ to each state in the timeline and to the current state.
Identity preservation: Versioned(id) = id (applying identity pointwise is identity).
Composition preservation: Versioned() o ¢) = Versioned(v) o Versioned(¢) (composing point-
wise applications). O

7 Implementation Architecture

7.1 The ContextFS Memory Store Interface

We now present a practical implementation mapping our formal framework to TypeScript.

Listing 1: ContextF'S Store Interface

interface ContextFSStore<S extends Schema> {
2 // Type-safe field operations
3 get <K extends keyof S[’fields’]>(key: K): S[’fields’][K];
4 set <K extends keyof S[’fields’]>(
5 key: K,
6 value: S[’fields’][K]
7): void;

9 // Invariant-checked bulk update

10 update (

11 patch: Partial<S[’fields’]>

12): Result<void, InvariantViolation>;

13

14 // Versioned operations

15 commit (reason: ChangeReason): Version;

16 checkout (version: Version): Memory<S>;

18 // Provenance queries

19 whyChanged (field: keyof S[’fields’]): ChangeHistory;
20 derivation(): DerivationTree;

21}

The interface enforces type safety: the get and set methods are parameterized by field
name, and the return/argument types are automatically inferred from the schema.

7.2 Schema Definition Language

Listing 2: Schema Definition

const AgentMemorySchema = defineSchema ({
2 name: ’AgentMemory’,
fields: {
4 identity: { type: ’string’, required: true 1,
beliefs: {
6 type: ’map’,
7 keyType: ’string’,
8 valueType: ’BeliefRecord’
9 },

15

10 goals: { type: ’list’, elementType: ’Goal’ 1},

11 context: { type: ’ref’, target: ’ConversationContext’ }
12 1,

13 invariants: [

14 // At least one goal must exist

15 (m) => m.goals.length > O,

16 // Belief confidence must be in [0, 1]

17 (m) => Object.values(m.beliefs)

18 .every(b => b.confidence >= 0 &&

19 b.confidence <= 1)

20]

21 1) ;

23 // Type is inferred from schema

24 type AgentMemory = InferMemory<typeof AgentMemorySchema>;

The InferMemory type-level function extracts the memory type from the schema definition,
ensuring that the TypeScript type system tracks our invariants.

7.3 Versioning Implementation

Listing 3: Versioned Memory Implementation

class VersionedMemory<S extends Schema> {
2 private timeline: Array<{
timestamp: DateTime,
4 state: Memory<S>,
5 reason: ChangeReason,
6 hash: Hash
7 1>
9 commit (state: Memory<S>, reason: ChangeReason): Version {
10 const previous = this.timeline.at(-1);
11 const entry = {
12 timestamp: now(),
13 state,
14 reason,
15 hash: computeHash(state, previous?.hash 77 GENESIS)
16 };
17 this.timeline.push(entry);
18 return entry.hash;
19 }
20
21 // Git-like operations
22 diff(vl: Version, v2: Version): MemoryDiff<S> { ... }
23 merge (branch: VersionedMemory<S>): MergeResult<S> { ... }
24 rebase (onto: Version): RebaseResult<S> { ... }
26 // Provenance queries
27 whyChanged (field: keyof S[’fields’]): ChangeReason[] {
28 return this.timeline
29 .filter(e => fieldChanged(e.state, field))
30 .map (e => e.reason);
31 }
32}

The implementation provides Git-like operations (diff, merge, rebase) while preserving
type safety and provenance tracking.

16

7.4 Example Schema Library
We provide a library of common memory schemas for Al agents.

Listing 4: Identity Schema

1 export const IdentitySchema = defineSchema ({

2 name: ’Identity’,

3 fields: {

A agentId: { type: ’uuid’, required: true 1},

5 name: { type: ’string’, required: true 1},

6 capabilities: { type: ’set’, elementType: ’Capability’ I},
7 constraints: { type: ’list’, elementType: ’Constraint’ }

» 1

Listing 5: Episodic Memory Schema

export const EpisodicMemorySchema = defineSchema ({
name: ’EpisodicMemory’,
fields: {

4 episodeld: { type: ’uuid’, required: true },

5 timestamp: { type: ’datetime’, required: true 1},

6 participants: { type: ’set’, elementType: ’AgentRef’ },
7 events: { type: ’list’, elementType: ’Event’ },

8 summary: { type: ’string’, optional: true },

9 salience: { type: ’float’, required: true }

10 },

11 invariants: [

12 (m) => m.salience >= 0 && m.salience <= 1,

13 (m) => m.events.length > 0

5}

Listing 6: Semantic Memory Schema

1 export const SemanticMemorySchema = defineSchema ({
2 name: ’SemanticMemory’,
3 fields: {
4 concept: { type: ’string’, required: true },
5 definition: { type: ’string’, required: true 1},
6 relations: {
7 type: ’map’,
8 keyType: ’RelationType’,
9 valueType: ’list<ConceptRef >’
10 },
11 confidence: { type: ’float’, required: true 1},
12 sources: { type: ’list’, elementType: ’Source’ }
13 },
14 invariants: [
15 (m) => m.confidence >= 0 && m.confidence <= 1,
16 (m) => m.sources.length > 0
17]
s });
Listing 7: Working Memory Schema

export const WorkingMemorySchema = defineSchema ({

2 name: ’WorkingMemory’,
fields: {

17

1 currentGoal: { type: ’ref’, target: ’Goal’, required: true 1},

5 activeContext: { type: ’ref’, target: ’Context’ },

6 scratchpad: { type: ’map’, keyType: ’string’, valueType: ’any’
},

7 attentionStack: { type: ’list’, elementType: ’AttentionItem’ }

8 },

9 invariants: [

(m) => m.attentionStack.length <= 7 // cognitive limit

o

11]
o });

8 Theoretical Implications

8.1 Memory as Proof-Carrying Data

Our framework reveals an important interpretation: memory states are proof-carrying data.
Each Mem[S] value carries:

1. The data itself

2. A proof that all schema invariants hold

3. (In versioned form) A derivation of how the state was reached

This connects to the Curry-Howard correspondence: memory types correspond to proposi-
tions, and memory inhabitants correspond to proofs.

Proposition 8.1 (Curry-Howard for Memory). There is a correspondence:

Type Theory Logic
Mem|[S] Proposition “Memory satisfying S exists”
m : Mem[S] Proof that such memory exists

AllSat Invariants d Congunction of validity constraints
Versioned[Mem([S]] History-indexed proposition

8.2 Agent Continuity as Narrative Coherence

Versioned memory provides a formal account of agent continuity that goes beyond mere persis-
tence.

Definition 8.1 (Narrative Coherence). An agent’s memory history exhibits narrative coherence
iff:

1. Every belief has a traceable origin (Theorem {4.2)
2. Every change has a justified reason (Definition
3. The overall trajectory forms a comprehensible story

This notion of coherence captures something important about agent identity: an agent is
not just its current state, but the history of how it came to be in that state.

18

8.3 The Epistemological Interpretation

Our framework can be interpreted epistemologically:

e Schemas correspond to conceptual frameworks—the categories through which an agent
understands its domain

e Types correspond to the laws of thought—what belief configurations are coherent

e Invariants correspond to background assumptions—the constraints that all beliefs must
satisfy

e Versioning corresponds to rational belief revision—the norms governing how beliefs change
in response to evidence

This interpretation suggests that typed memory is not merely an engineering convenience
but captures something fundamental about the structure of rational cognition.

8.4 Computability and Decidability

Proposition 8.2 (Invariant Checking Decidability). For schemas with decidable invariants,
membership in Mem[S] is decidable.

Proof. To check if data d can form a valid memory, we need to verify AllSat S.Invariants d. This
is a finite conjunction of decidable predicates, hence decidable. O

Remark 8.1. In practice, invariants should be restricted to decidable predicates (computable
functions returning boolean). Undecidable invariants would make type-checking impossible.

9 Comparison with Existing Approaches

Table 1: Comparison of Memory Architectures

Aspect Vector KV Files RAG Typed
Schema None None Conv. None Compile
Invalid state ~ Runtime Silent Parse Runtime Unrep.
Provenance Meta Manual Git None Built-in
Type safety None None None None Full
Revision Overwrite Overwrite Manual Overwrite Causal
Query sound Stat. None None Stat. Constr.
Composition Ad hoc Ad hoc Dir. Ad hoc Typed

9.1 Vector Stores

Vector stores (e.g., Pinecone, Weaviate, ChromaDB) organize memory by embedding similarity.
While effective for retrieval, they lack structural guarantees, typed queries, and provenance
tracking.

9.2 Key-Value Stores

Key-value stores (e.g., Redis, DynamoDB) provide fast access but offer no schema, allow silent
corruption, and cannot enforce relations.

19

9.3 File Systems

File-based memory provides human-readability but relies on convention-based structure, external
versioning, and parse-time validation.

9.4 Retrieval-Augmented Generation

RAG systems combine retrieval with generation but are chunk-based with no global consistency,
use statistical retrieval, and have no persistent memory update mechanism.

Our typed memory framework addresses all these limitations through its foundational prin-
ciples.

10 Future Work

10.1 Distributed Agent Memories

Extending the framework to distributed settings raises interesting challenges around eventual
consistency, conflict resolution, and consensus protocols that preserve type safety.

10.2 Probabilistic Types

Many agent beliefs are uncertain. Incorporating probabilistic types would enable confidence
intervals, probabilistic invariants, and Bayesian versioning.

10.3 Proof Assistants for Schema Design

Designing correct schemas is challenging. Future work includes interactive schema editors,
schema inference, and migration verification.

10.4 Integration with Neural Systems

Bridging typed memory with neural networks through differentiable types, neural invariant
learning, and hybrid architectures.

11 Conclusion

We have presented a formal framework for ATl memory as a typed structure, grounded in three
principles from ContextFS:

1. Schemas shape reasoning: Memory structure determines the space of valid inferences

(Proposition

2. Types enforce validity: Invalid memory states are unrepresentable by construction
(Theorem [2.1])

3. Versioning preserves continuity: The causal structure of belief revision is maintained
(Theorem [4.1])

The framework provides compile-time guarantees about memory validity, sound inference
over memory contents, explainable belief revision through derivation tracking, compositional
memory architecture (Theorem [6.1]), and safe schema evolution (Theorem [5.1).

Beyond engineering benefits, the framework suggests that the structure of memory is not
incidental to cognition but constitutive of it. What an agent can think depends on how its

20

memory is organized. What beliefs are coherent depends on what invariants are enforced. What
reasoning is valid depends on what schemas are in place.

Typed memory is thus not merely “better storage™—it is a foundation for principled Al

cognition.

Acknowledgments

The author thanks the YonedaAl Research Collective for ongoing discussions on the foundations
of Al memory systems.

References
[1] Per Martin-Lof. Intuitionistic Type Theory. Bibliopolis, Naples, 1984.
[2] The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of
Mathematics. Institute for Advanced Study, 2013.
[3] Benjamin C. Pierce. Types and Programming Languages. MIT Press; 2002.
[4] Henk Barendregt. Lambda calculi with types. In Handbook of Logic in Computer Science,
volume 2. Oxford University Press, 1992.
[5] Edwin Brady. Idris, a general-purpose dependently typed programming language. Journal
of Functional Programming, 23(5):552-593, 2013.
[6] Haskell B. Curry, Robert Feys, and William Craig. Combinatory Logic, volume 1. North-
Holland, 1958.
[7] William A. Howard. The formulae-as-types notion of construction. In To H.B. Curry:
Essays on Combinatory Logic. Academic Press, 1980.
[8] Carlos E. Alchourron, Peter Géardenfors, and David Makinson. On the logic of theory
change. Journal of Symbolic Logic, 50(2):510-530, 1985.
[9] Peter Gérdenfors. Knowledge in Fluz. MIT Press, 1988.
[10] Richard A. Eisenberg and Stephanie Weirich. Dependently typed programming with sin-
gletons. In Haskell Symposium, 2012.
[11] Carlo Curino, Hyun Jin Moon, and Carlo Zaniolo. Graceful database schema evolution.
VLDB, 1(1):761-772, 2008.
[12] Philip Wadler. Propositions as types. Communications of the ACM, 58(12):75-84, 2015.
[13] Ulf Norell. Dependently typed programming in Agda. In Advanced Functional Programming.
Springer, 2009.
A Complete Type Definitions

Listing 8: Core Memory Types in Haskell

{-# LANGUAGE GADTs, DataKinds, TypeFamilies #-}

-- Core memory type
data Memory (s :: Schema) where

21

5 MkMemory :: (data_ :: Record (Fields s))
6 -> (proof :: AllSat (Invariants s) data_)
7 -> Memory s

9 -- Versioned memory with causal history

10 data Versioned (m :: *) where

11 MkVersioned :: (current_ :: m)

12 -> (timeline :: [Timestamped (m, ChangeReason)])
13 -> (valid :: ValidTimeline timeline current_)
14 -> Versioned m

15

16 -- Change reasons

17 data ChangeReason where

18 Observation :: Source -> Evidence -> ChangeReason

19 Inference :: InferenceRule -> [Memory s] -> ChangeReason
20 Correction :: Memory s -> Text -> ChangeReason

21 Decay :: (Float -> Float) -> ChangeReason

3 -- Schema definition
24 data Schema where

25 MkSchema :: (fields :: [(Symbol, *)1])

26 -> (invariants :: [Constraint fields])
27 -> (relations :: [Relation fields])

28 -> Schema

30 -- Type families for schema access

31 type family Fields (s :: Schema) :: [(Symbol, x)]

32 type family Invariants (s :: Schema) :: [Constraint (Fields s)]

33 type family AllSat (cs :: [Constraint fs]) (d :: Record fs)
Constraint

B Proof of Compositionality
Detailed Proof of Theorem[6.1] Let S; and So be schemas with disjoint field names:
S1.Fields N Sy.Fields = ()
Let m; : Mem[Si] and mg : Mem[Ss] with:

mi = (datalvpfl)
ma = (dataz, pfs)

Step 1: Data construction. Define data = data; U datas. This is well-defined by field
disjointness.

Step 2: Invariant satisfaction for S;. Let ¢ € Sj.Invariants. Since ¢ only references
Si.Fields and datalg, Fields = datai, we have c(data) = ¢(datay). By pf, this holds.

Step 3: Invariant satisfaction for S;. Symmetric to Step 2.

Step 4: Construction. m; ® mgo := MkMem data pf where pf combines pf; and pfy,. O

22

	Introduction
	The Crisis of Untyped Memory
	The ContextFS Principles
	Contributions
	Related Work
	Paper Organization

	Formal Foundations
	The Category of Memory Types
	Memory Types as Dependent Types
	The Unrepresentability Principle
	Proof-Relevant Memory

	Schemas and Reasoning
	The Schema-Reasoning Correspondence
	Query Languages and Type Safety
	Inference Rules as Types
	The Inference Lattice

	Versioned Memory and Agent Continuity
	The Temporal Structure of Belief
	Derivation Trees
	Reasoning About Memory Change
	Causal Consistency
	Agent Identity Through Time

	The ContextFS Type System
	Type Grammar
	Formation Rules
	Introduction Rules
	Elimination Rules
	Computation Rules
	Subtyping and Schema Evolution

	Memory Composition
	The Compositional Property
	Applications of Compositionality
	Memory Morphisms
	Functorial Properties

	Implementation Architecture
	The ContextFS Memory Store Interface
	Schema Definition Language
	Versioning Implementation
	Example Schema Library

	Theoretical Implications
	Memory as Proof-Carrying Data
	Agent Continuity as Narrative Coherence
	The Epistemological Interpretation
	Computability and Decidability

	Comparison with Existing Approaches
	Vector Stores
	Key-Value Stores
	File Systems
	Retrieval-Augmented Generation

	Future Work
	Distributed Agent Memories
	Probabilistic Types
	Proof Assistants for Schema Design
	Integration with Neural Systems

	Conclusion
	Complete Type Definitions
	Proof of Compositionality

